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ABSTRACT: 
The paper focuses on dynamic reanalysis 

of simple beam structures using a polynomial 

regression method. The method deals with the 

stiffness and mass matrices of structures and can 

be used with a general finite element system. This 

method is applied to approximate dynamic 

reanalysis of cantilever simple beam structure and 

T-structure. Preliminary results for these example 

problems indicate the high quality approximation 

of natural frequencies can be obtained.  The final 

results from regression method and Finite element 

method are compared.   
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INTRODUCTION:  

Reanalysis methods are intended to analyze 

efficiently new designs using information from 

previous ones. One of the many advantages of the 

substructure technique is the possibility of repeating 

the analysis for one or more of the substructures 

making use of the work done on the others. This 
represents a significant saving of time when 

modifications once are required. Modification is 

invariably required in iterative processes for optimum 

design never the less, in the case of large structures 

the expenses are still too high.[1] 

Therefore, development of techniques which 

are themselves based on previous analysis, and which 

obtained the condensed matrices of the substructures 

under modification, with little extra calculation time, 

can be very useful. “General Reanalysis Techniques” 

are very useful in solving medium size problems and 

are totally essential in the design of large structures.  
Some steps in a dynamic condensation process are 

particularly characterized by their computational 

effort, as for instance:  

 Stiffness matrix factorization  

 Resolution of certain systems of linear equation 

 Resolution of an eigen problem to obtain the 

normal vibration modes. 

Reanalysis methods [2] are intended to 

analyze efficiently structures that are modified due to 

changes in the design. The object is to evaluate the 

structural response for such changes without solving  

 

 

 

the complete set of modified simultaneous equations. 

The solution procedures usually use the original 
response of the structure. 

 

SOLUTION APPROACH- FINITE 

ELEMENT METHOD 
Initially the beam is divided into smaller 

sections using successive levels of division. Analysis 

of each section is performed separately. Using the 
finite element technique, the dynamic analysis of 

beam structure is modeled.   

[K-λM] [X]=0 ----------------- (1) 

Where k, m are the stiffness and mass matrix 

respectively.  

The dynamic behavior of a damped structure 

[4] which is assumed to linear and discretized for n 

degrees of freedom can be described by the equation 

of motion. 

M +C +Kx=f-------------(2) 

Where M, C = αM+βK, and K are mass, 

damping and stiffness matrices, , and X are 

acceleration, velocity, displacement vectors of the 

structural points and “f” is force vector. Undamped 

homogeneous equation M +Kx=0.  Provides the 

Eigen value problem   (k-λm)  = 0. 

Solution of above equation yields the matrices Eigen 

values λ and Eigen vectors   

λ   =   ,  = [ 1, 2….. n] 

The eigenvector satisfy the orthonormal 

conditions M =I, K =λ, C  = αI+βλ=ξ, 

Using the transformation X = q in the equation of 

motion, and premultiplying by  one obtains, 

M + C + K q= f  -------------(3) 

It is important note, that the matrices,   

= M ,   = C ,   K are not 

usually diagonalised by the eigenvectors of the 

original structure [3] Given an initial geometry  and 

assuming a change ΔY in the design variables, the 
modified design is given by  

Y = +ΔY. ------------------ (4) 

The geometric variables Y usually represent 

coordinates of joints, but other choice for these 
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variables is sometimes preferred. The displacement 

analysis equations for the initial design are 

 r = R.  

where  = stiffness matrix corresponding to the 

design  , R= load vector whose elements are usually 

assumed to be independent of the design variables 

and r= nodal displacements computed at . The 

stiffness matrix and mass matrix of a typical plane 

truss element are 

K=     and 

M=  

„A‟ is the cross sectional area, ‟l‟ is member length, 

of the beam „  „  is density of the beam. 

 

REANALYSIS OF REGRESSION 

METHOD 
The statistical determination of the 

relationship between two or more dependent 

variables has been referred to as a correlation 

analysis, [6]whereas the determination of the 

relationship between dependent and independent 

variables has come to be known as a regression 
analysis.  

 

1.1 Regression  
The actual term “regression” is derived from 

the Latin word “regredi,” and means “to go back to” 

or “to retreat.” Thus, the term has come to be 

associated with those instances where one “retreats” 

or “resorts” to approximating a response variable 

with an estimated variable based on a functional 

relationship between the estimated variable and one 

or more input variables. In regression analysis, the 
input (independent) variables can also be referred to 

as “regressor” or “predictor” variables. 

 

3.1.1 Linear Regression  
Linear regression involves specification of a 

linear relationship between the dependent variable(s) 

and certain properties of the system under 

investigation. Linear regression deals with some 

curves as well as straight lines. 

 

 

 

3.1.2 Ordinary Linear Regression 

The simplest general model for a straight 

line includes a parameter that allows for inexact fits: 

an “error parameter” which we will denote as .                         
 Thus we have the formula:   

Y = α +β X +  ----------------- (5) 

The parameter, α, is a constant, often called 

the “intercept” while b is referred to as a regression 

coefficient that corresponds to the “slope” of the line. 

The additional parameter ε accounts for the type of 

error that is due to random variation caused by 

experimental imprecision. The regression procedure 

assumes that the scatter of the data points about the 
best-fit straight line reflects the effects of the error 

term,[12-15] and it is also implicitly assumed that ε 

follows a Gaussian distribution with a mean of 0. 

Now, however, we will assume that the error is 

Gaussian Figure 2 illustrates the output of the linear 

model with the inclusion of the error term. 

 

3.1.3 Multiple Linear Regressions 

The straight line equation is the simplest 

form of the linear regression given as  

Y=α+βX+ε 

Where α+βX represents the deterministic part and ε is 
the stochastic component of the model. 

 

The simple linear population model equation 

indicating the deterministic component of the model 

that is precisely determined by the parameters α and 

β, and the stochastic component of the model, ε that 

represents the contribution of random error to each 

determined value of Y. It only includes one 

independent variable. When the relationship of 

interest can be described in terms of more than one 

independent variable, the regression is then defined 
as “multiple linear regression.” The general form of 

the linear regression model may thus be written as: 

Y = +…….+ + ε. --------------- 

(6) 
Where, Y is the dependent variable, and X1, 

X2 … Xi are the (multiple) independent variables.  

Multiple linear regression models also encompass 

polynomial functions:  

Y = +……. + +, ------------- (7) 

The equation for a straight line is a first-order 
polynomial. The quadratic equation,  

Y=  ------------------ (8) 

is a second-order polynomial whereas the cubic 
equation, 

Y =  -------------- (9) 

is a third-order polynomial. 

Taking first derivatives with respect to each of the 
parameters yields: 

 = 1,  = X,      = ---------------- (10) 

The model is linear because the first 

derivatives do not include the parameters. As a 

consequence, taking the second (or higher) order 

derivative of a linear function with respect to its 

parameters will always yield a value of zero. Thus, if 

the independent variables and all but one parameter 

are held constant, the relationship between the 

dependent variable and the remaining parameter will 
always be linear. It is important to note that linear 
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regression does not actually test whether the data 

sampled from the population follow a linear 

relationship. It assumes linearity and attempts to find 

the best-fit straight line relationship based on the data 

sample. The dashed line shown in the figure (1) is the 

deterministic component, whereas the points 

represent the effect of random error. 

 
Figure 1:  A linear model that incorporates a 

stochastic (random error) component. 
    

3.1.4 Assumptions of Standard Regression 

Analyses 

 The subjects are randomly selected from a larger 

population. The same caveats apply here as with 

correlation analyses. The observations are 

independent. The variability of values around the 

line is Gaussian. 

 X and Y are not interchangeable. Regression 

models used in the vast majority of cases attempt  

to predict the dependent variable, Y, from the 

independent variable, X and assume that the 
error in X  is negligible. In special cases where 

this is not the case, extensions of the standard 

regression techniques have been developed to 

account for non negligible error in X. 

 The relationship between X and Y is of the 

correct form, i.e., the expectation function (linear 

or nonlinear model) is appropriate to the data 

being fitted. 

 There are enough data points to provide a good 

sampling of the random error associated with the 

Experimental observations. In general, the 
minimum number of independent points can be  

no less  than the number of parameters being 

estimated, and should ideally be significantly 

higher. 

 

NUMERICAL EXAMPLES 
The polynomial regression method is 

applied to a simple beam structures. In finite element 

method, Discretization means dividing the body into 
an equivalent system of finite elements with 

associated nodes. The element must be made small 

enough to view and give usable results and to be 

large enough to reduce computational efforts. Small 

elements are generally desirable where the results are 

changing rapidly such as where the changes in 

geometry occur. Large elements can be used where 

the results are relatively constant. The discretized 

body or mesh is often created with mesh generation 

program or preprocessor programs available to the 

user. Figure (2) shows an example of creating a finite 

element for a cantilever beam. 

 
Figure 2: Descretized Element 

 

The polynomial equation for regression method,   

 + + . 

These 3 values for both case studies  

Young‟s modulus (E) 0.207×  N/  

Density (ρ) 7806 Kg/  

Cross section of area (A) 0.029×0.029  

 

1.2 Case Study 1 

The Cantilever Beam of 1m length, shown 
in figure () is divided into 4 elements equally element 

Stiffness Matrix and Mass Matrix are extracted. 

Natural frequencies of the cantilever beam at each 

node are found from MATLAB program by 

considering two situations- 

a) width alone is increased by 5% and 

b) width and depth of the beam are increased by 5% 

each. 

Reanalysis of the beam is done by 

Polynomial regression and the percentage errors are 

listed in the table. 

                             

 
Figure 3: Cantilever beam with nodes and 

elements 

 

First natural frequencies of cantilever beam 
by increasing depth of the beam by 5%. The 

polynomial regression equation is given by  

 + +  

Fitting target of lowest sum of squared absolute error 

= 8.7272727289506574  , 

-3.6333 ,                       = -

1.053659  

= 7.76275 ,                      = -

3.05561 , 

= 8.07983                   C6 = 2.2512E+01 

 

First natural frequencies of cantilever beam 

by increasing width and depth of the beam by 5%.  
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Fitting target of lowest sum of squared absolute error 

= 1.8470358974358964  ,  

-6.30489 ,      = 

4.028518 , 

= 4.028518 ,     = -

1.0347691 , 

 = -1.0347691 ,     = -

1.0347691 , 

 

Table 1: Increasing the Depth of the Beam 

Widt

h 
Height 

Natural 

Frequenc

y 
Fem(Hz) 

Natural 

Frequency 

Regression(H
z) 

%Erro

r 

0.029 0.029 22.53 22.52 -0.044 

0.029 
0.0304

5 
23.65 23.64 -0.042 

0.029 0.0319 24.78 24.69 -0.363 

0.029 
0.0333

5 
25.91 25.88 -0.115 

0.029 0.0348 27.03 27.01 -0.074 

0.029 
0.0362

5 
28.16 28.13 -0.106 

0.029 0.0377 29.29 29.27 -0.020 

0.029 
0.0391

5 
30.41 30.40 -0.033 

0.029 0.0406 31.54 31.53 -0.032 

0.029 
0.0420

5 
32.67 32.66 -0.03 

0.029 0.0435 33.79 33.76 -0.089 

 

Table 2: Increasing Width and Depth of the Beam 

Width Height Natural 

Frequen

cy 

Fem(Hz
) 

Natural 

Frequency 

Regression(

Hz) 

%Erro

r 

0.029 0.029 22.47 22.47 0 

0.0304

5 

0.0304

5 

23.60 23.61 0.0423

7 

0.0319 0.0319 24.72 24.75 0.1213

5 

0.0333

5 

0.0333

5 

26.08 26.89 3.1058

2 

0.0348 0.0348 26.97 27.03 0.2224

6 

0.0362

5 

0.0362

5 

28.09 28.16 0.2491

9 

0.0377 0.0377 29.22 29.59 1.2662

5 

0.0391

5 

0.0391

5 

30.34 30.38 0.1318

3 

0.0406 0.0406 31.56 31.90 1.0773

1 

0.0420

5 

0.0420

5 

32.59 32.70 0.3375

2 

0.0435 0.0435 33.80 33.83 0.0887

5 

 

 

4.2 Case Study 2 

The dimensions of a T-structure are given in 

figure (4). The Cantilever Beam is divided into 6 

elements. Then Element Stiffness Matrix, mass 

Matrix and natural frequencies are determined using 
MATLAB. Polynomial regression method is applied 

to this structure. The results from polynomial 

regression and FEM are compared for closeness.  

 
Figure 4: T-Structure with nodes and elements 

 

The results are as follows: First natural 

frequencies of cantilever beam by increasing depth of 

the beam by 5%.  

Fitting target of lowest sum of squared absolute error 

equal to 1.0240640782836770 ,         

-8.043993 ,       = -

1.35761 ,  

   = 1.53493 ,               = -

6.65185  

   = -3.99731 ,       = 

4.446583 . 

 

Natural frequencies of cantilever beam by 

increasing width and depth of the beam by 5%,  
Fitting target of lowest sum of squared absolute error 

equal to 7.2417839254080818 ,        

   

-3.483496         =  

 

7.71712 ,  

    

= 7.71712 ,    = - 

 

1.8478  

    

= -1.8478           = - 

 

1.8478  

 

 
 

 

 

 



B. Rama Sanjeeva Sresta, Dr. Y. V. Mohan Reddy / International Journal of Engineering 

Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.com  

  Vol. 2, Issue4, July-August 2012, pp.2126-2131 

2130 | P a g e  

 

 

Table 3:Increasing Depth of the Beam 

Widt

h 
Height 

Natural 

Frequen

cy 

Fem 

(Hz) 

Natural 

Frequenc

y 

Regressi

on (Hz) 

%Error 

0.02

9 
0.029 444.69 444.71 

4.4975×

 

0.02

9 

0.0304

5 
466.91 466.93 

4.2834×

 

0.02

9 
0.0319 489.16 489.17 

2.0443×

 

0.02

9 

0.0333

5 
511.49 511.50 

1.9550×

 

0.02

9 
0.0348 533.63 533.65 

3.7479×

 

0.02

9 

0.0362

5 
555.85 555.86 

1.7990×

 

0.02

9 
0.0377 578.02 578.04 

3.4600×

 

0.02

9 

0.0391

5 
600.33 600.34 

1.6657×

 

0.02

9 
0.0406 622.57 622.57 0 

0.02

9 

0.0420

5 
644.76 644.78 

3.1019×

 

0.02

9 
0.0435 667.02 667.04 

2.0084×

 

 

Table 4: Increasing Width and Depth of the 

Beam(T-Structure) 

Width Heigh

t 

Natural 

Frequen

cy  

Fem(Hz

) 

Natural 

Frequency 

Regression(

Hz) 

%Error 

0.029 0.029 444.36 444.36 0 

0.030
45 

0.030
45 

465.79 466.43 0.1374
00 

0.031

9 

0.031

9 

487.97 488.81 0.1721

41 

0.033

35 

0.033

35 

514.76 515.18 0.1787

2 

0.034

8 

0.034

8 

532.30 533.55 0.2347

41 

0.036

25 

0.036

25 

554.51 555.93 0.2560

81 

0.037

7 

0.037

7 

576.72 578.30 0.2739

63 

0.039

15 

0.039

15 

598.87 600.68 0.3022

35 

0.040

6 

0.040

6 

629.67 630.65 0.1556

35 

0.042

05 

0.042

05 

643.26 645.43 0.1818

86 

0.043

5 

0.043

5 

667.06 667.79 0.1094

35 

CONCLUSION 
From this work the following conclusions 

are drawn. The FEM method is applied for dynamic 

analysis of cantilever beam and T-structure using the 

MAT lab. Natural frequencies are obtained for 
cantilever and T-structure beams using FEM.the 

polynomial regression method is used for obtaining 

natural frequencies of cantilever beam and T-

structure by varying width and depth for dynamic 

reanalysis. 

The results obtained from reanalysis using 

regression method are close to results obtained using 

FEM. The minimum and maximum errors in 

regression method when compared with the results 

obtained by FEM are  

 

 Minimum Maximum 

Cantilever 

beam 

-0.36319 (with 
increasing width) 

0 (with increasing 

width and depth) 

-0.02000 
3.10582 

 

 

T-structure 

0(with increasing 

width) 

0(with increasing 

width and depth) 

4.4975×  

0.302235 
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