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Abstract− The Model Reference Adaptive System 

(MRAS) is probably the most widely applied speed sensor 

less drive control scheme. This paper gives induction motor 

speed estimation using conventional MRAS and AI-based 

MRAS with Stator Resistance Compensation methods. A 

conventional mathematical model based MRAS speed 

estimation scheme can give a relatively precise speed 

estimation result, but errors will occur during low frequency 

operation. Furthermore, it is also very sensitive to machine 

parameter variations. However, an AI-based MRAS-based 

system with a Stator Resistance Compensation model can 

improve the speed estimation accuracy and is relatively 

robust to parameter variations even at an extremely low 

frequency. Simulation results using a validated machine 

model are used to demonstrate the improved behavior and 

also controlling the speed of motor by using space vector 

pulse width modulation (SVPWM) with estimated speed 

taking as feedback. 

 

Index Terms− Dynamic Reference Model, Model 

Reference Adaptive System (MRAS), Neural Networks, 

Induction Motor Control.  

 

I. INTRODUCTION 
 

Much effort has been devoted to speed-sensor less 

induction machine drive schemes, with Model Reference 

Adaptive System (MRAS) being the most popular. In a 

conventional mathematical-model-based MRAS, some 

state variables are estimated in a reference model, (e.g. 

rotor flux linkage components, ψrd, ψrq, or back e.m.f. 

components, ed,  eq,etc.) of the induction machine 

obtained by using measured quantities, (e.g. stator currents 

and perhaps voltages).  These reference model components 

are then compared with state Variables estimated using an 

adaptive model. The difference between these state 

variables is then used in an adaptation mechanism, which, 

for example, outputs the estimated value of the rotor speed 

(ωr) and adjusts the adaptive model until satisfactory 

performance is obtained Nevertheless, greater accuracy 

and robustness can be achieved, if the mathematical model 

is not used at all and instead, an AI-based non-linear 

adaptive model is employed.  It is then also possible to 

eliminate the need of the separate PI controller, since this 

can be integrated into the tuning mechanism of the AI-

based model.  However, both the conventional MRAS and 

AI-based MRAS scheme are easily affected by machine 

parameter variations, which happen during practical 

operation. In this case, an online stator resistance estimator 

is applied to the AI-based MRAS scheme which makes the 

whole scheme more robust during computer simulation and 

could possible make the scheme usable for practical 

operation.  The comparison of schemes presented here is 

felt to be valuable since much of the literature presents 

results for the novel approach alone.  

 

II. SPEED ESTIMATION USING 

CONVENTIONAL MODAL REFERENCE 

ADAPTIVE SYSTEM 
 

In MRAS, there are two models, which work parallel to 

estimate flux-linkage of induction motor, first model name 

reference, and input is current and voltage, the output flux 

linkage of this model is to be used fiducial variable. The 

second model is adaptive, input of it is current and rotor 

speed, output flux-linkage of this model is been adjusted 

continuously in order that the error between those two 

models is turn to zero by adjusting the input of adaptive 

model through PI controller. The expressions for the rotor 

flux linkages in the stationary reference frame can be 

obtained by using the stator voltage equations of the 

induction machine (in the stationary reference frame). 

These give (1) and (2), which are now rearranged for the 

rotor flux linkages:  
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  (2) 

 

 

These two equations represent a so-called stator voltage 

model, which does not contain the rotor speed and is 

therefore a reference model. However, when the rotor 

voltage equations of the induction machine are expressed 

in the stationary reference frame, they contain the rotor 

fluxes and the speed as well. These are the equations of the 

adaptive model:  
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The reference and adaptive models are used to estimate the 

rotor flux linkages and the angular difference of the 

outputs of the two estimators 

rqrdrdrqrrw  ˆˆ)ˆ,Im( *  is used as the 

speed tuning signal. Adaptation mechanism is the PI 

controller to turn the error state of reference and adaptive 

model to zero by adjusting the input of adaptive model, 

which variable is the rotor speed.  

 
 

Fig.1 MRAS-based rotor speed observer using rotor 

flux 

Linkages for the speed tuning signal 

 

By the time error state equivalent to zero the system give 

the estimate speed equivalent to actual speed .The 

estimated speed can be expressed as (5) 

   dtkk wiwpr     (5) 

 

III. ARTIFICIAL INTELLIGENCE-BASED 

MODEL REFERENCE ADAPTIVE 

SYSTEM 
 

The MRAS-based schemes described in the previous 

section contain a reference model and an adaptive model. 

However, greater accuracy and robustness can be achieved 

if the mathematical model is partially replaced by a neural 

network. It is then also possible to eliminate the need of the 

separate PI controller, since this can be integrated into the 

tuning mechanism of the neural network-based model. The 

neural network-based model can take various forms: it can 

be an artificial neural network (ANN) or a fuzzy neural 

network etc. and there is also the possibility of using 

different types of speed tuning signals. It is believed that 

some of these solutions can give high accuracy and are 

relatively robust to parameter variations even at extremely 

low stator frequency. One specific implementation of the 

ANN-based MRAS speed estimator system which is 

popular in academic work, as shown in Fig. 2, which is 

similar to the conventional MRAS system. In this new 

model, the adaptive model is replaced by a simple two 

layer neural network, which enables the whole system with 

fast response and better accuracy than the conventional 

MRAS 

.       

 
Fig.2 MRAS-based rotor speed estimator containing 

a two layer ANN 

 

 

IV. MRAS based Two Layer ANN speed estimator 

with dynamic reference modal 
 

Compared to the conventional MRAS based rotor 

speed estimator containing a Two layer ANN could give 

more accurate estimation result and relatively robust to 

parameter variations. The two layer ANN replaces the 

adjustable model and adaptive mechanism in the 

conventional MRAS, but the reference model is still 

necessary for estimation the rotor flux which is used as 

speed tuning signal. Several machine parameters are used 

to build the conventional reference model, such as stator 

resistance (Rs) and stator reluctance (Ls). These parameters 

may change during the different periods of motor 

operating. The values of these parameters are fixed in the 

reference model. So the ANN speed estimator is still 

sensitive to parameter variations especially during the 

motor low speed running period. To solve this problem and 

make this scheme more independent to the machine 

parameters, a stator resistance estimator is built in the new 

reference model, in which the stator resistance Rs value 

could be estimated online. Fig. 3 shows the total scheme of 

neural network based MRAS with a dynamic reference 

model.
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In this new system, both the reference model and adaptive 

model of the conventional MRAS system are modified for 

better performance. The whole system can be divided into 

two main parts, the dynamic reference model part and the 

neural network part. The dynamic reference part consists 

of the dynamic reference model derived from equations (1) 

and (2), in which the stator resistance Rs is replaced by the 

online estimated value  Rs coming from equation (6) and 

(7), 

s
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 (7)

 

The neural network part contains a simple two-layer neural 

network, with only an input layer and an output layer. 

Adjustable and constant weights are built in the neural 

network, and the adjustable weights are proportional to the 

rotor speed. 

  
Fig.3 MRAS based ANN speed estimator with dynamic 

reference model. 

 

The adjustable weights are changed by using the error 

between the outputs of the reference model and the 

adjustable model, since any mismatch between the actual 

rotor speed and the estimated rotor speed results in an error 

between the outputs of the reference and adaptive 

estimators. To obtain the required weight adjustments in the 

ANN, the sampled data forms of equations (3) and (4) are 

considered. By using the backward difference method, the 

sampled data forms of the equations for the rotor flux 

linkages can be written as (8) and (9), where T is the 

sampling time. 
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Thus the rotor flux linkages at the kth sampling instant can 

be obtained from the previous (k-1)th values as 

)1()/()1()/1)(1()(  kiTTLkTTTkk sdrmrqrrrdrd 


         (10) 
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Introducing the following weights are given: 
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It can be seen that w1 and w3 are constant weights, but w2 

is a variable weight and is proportional to the speed. Thus 

Equations (10) and (11) take the following forms:  

 

)1()1()1()( 321  kiwkwkwk sDrqrdrd 


 
         

(13)
   )1()1()1()( 321  kiwkwkwk sQrdrqrq 



 
         

(14)
   

These equations can be visualized by the very simple two 

layer ANN shown in Fig. 4.  

 
 

Fig. 4 Neural network representation for estimated rotor flux 

linkages 

The neural network is training by the back propagation 

method; the estimated rotor speed can be obtained from:  
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Where η is the learning rate and α is a positive constant 

called the momentum constant. The inclusion of the 

momentum term into the weight adjustment mechanism can 

significantly increase the convergence, which is extremely 

useful when the ANN shown in Fig. 4 is used to estimate in 

real time the speed of the induction machine. 
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V.SPEED CONTROL BY USING SPACE 

VECTOR PULSE WIDTH MODULATION 

(SVPWM): 
By the above process we can estimate the speed of induction 

motor which is actual speed of rotor. If the estimated speed is 

not equal to reference speed to operate, we can run the motor 

as our requirement by using estimated speed as a feed back 

and SVPWM. By comparing the reference speed and 

estimated speed, an error will produce which is send to PI 

controller to produce the required  qi


 

i.e. q-axis current of 

induction motor.  This q-axis current is again compared with 

actual (steady state) qi to find out the error, which is helpful 

to estimate the require amount of voltage, which is need to 

space vector pulse width modulation. In SVPWM the 

required switching pulses will give to voltage source inverter 

(VSI) to reduce the error between ( qi


qi, ). In VSI the 

required switching operations ( as switching pulses giving 

from SVPWM) will done to reduce the error between 

estimated speed and reference (required) speed and produce 

voltages Va,Vb,Vc to minimize the error. 

 

VI.SIMULATION RESULTS  
 

To compare the conventional MRAS and the AI-based 

MRAS with dynamic reference model, simulations are 

established by using Matlab-Simulink software, based on 

the standard well established validated 2-axis machine 

model [6]. Speed estimation results using conventional 

MRAS and neural network based MRAS are shown in Fig. 

5 and Fig. 6 respectively. These results assume the machine 

parameters are correctly measured and unchanged during 

operation. Both of the two schemes can give good speed 

tracking results.  

 

 
Fig. 5 Speed estimation using Conventional MRAS 

 

 
Fig. 6 Speed Estimation using Two-layer ANN MRAS 

 

Further simulation has been carried out with changed stator 

resistance to test how much the parameter changing would 

affect the speed estimation results. 

 

 
Fig.7 Speed estimation by using Conventional MRAS (with 

Stator resistance Rs changed 2%) 

 

 
 

Fig. 8 Speed Estimation using Two-layer ANN MRAS 

(with Stator resistance Rs changed 2%) 

 



L.A.Abraham Arunchand, K.Sudharshan Reddy / International Journal of Engineering Research and 

Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 4, July-August 2012, pp.087-092 

91 | P a g e  
 

 

 

 

 

 

        

Fig. 9 Speed Estimation using Two-layer MRAS with 

Dynamic reference model 

 

 

Fig. 10 Estimated Rs in the dynamic reference model 
 

In Fig. 7 and Fig. 8, simulations are carried out with the stator 

resistance changed by a small amount, 2%. Obviously, both 

schemes are still sensitive to parameter variations. A final 

simulation for AI-based MRAS with the dynamic reference 

model is shown in Fig. 9. The online estimated stator resistance 

is displayed in Fig. 10. From the simulation result in Fig. 9, the 

effect caused by the stator resistance variation has been 

considerably improved.  Comparing all the above simulation 

results shows that the conventional MRAS scheme works well  

 

 

 

when the parameters are precisely measured and do not change 

during operation. The MRAS with adaptive model replaced by 

the two-layer neural network can slightly improve the 

performance when working in the same situation. But both 

schemes can still be easily affected by parameters variations, 

which do occur during practical operation. By introducing the 

stator resistance online estimator, the performance is much 

improved which should enable the scheme usable for practical 

operation. 

 

VI I.CONCLISION  
 

The main objective of this paper is to compare 

conventional MRAS and AI-based MRAS for induction motor 

speed sensor less speed estimation. The conventional MRAS 

can give good speed estimation in most of the operation 

period, but errors will occur during low frequency operation 

mainly caused by the machine parameter variations. An AI-

based MRAS system can give improved accuracy and 

bypasses the PI controller tuning problems. The simple 

structure of the two-layer neural network shown in Fig. 4 

yields a speed estimation system working online with a fast 

response. Also the simple two-layer neural network does not 

require a separate learning stage, since the learning takes 

place during the on-line speed estimation process. This is 

mainly due to the fact that the development time of such an 

estimator is short and the estimator can be made robust to 

parameter variations and noise. Furthermore, in contrast to 

most conventional schemes, it can avoid the direct use of a 

speed-dependent mathematical model of the machine. 

However, the Two-layer neural network MRAS lies more in 

the realm of adaptive control then neural networks. The speed 

value is not obtained at the output, but as one of the weights. 

Moreover, only one weight is adjusted in the training. 

Therefore, it would still be sensitive to parameter variations 

and system noise. In the new approach, an online stator 

resistance estimator is used to compensate the parameter 

variations. From the comparison of the computer simulation 

results, it is obvious that this new approach makes the whole 

scheme more robust to parameter variations, which also gives 

the possibility of practical use of the neural network based 

MRAS scheme. The stator resistance estimator is working 

under adaptive mechanism (PI controller). Further study 

could be carried out for replace the PI controller with another 

simple neural network which could also estimate more 

machine parameters. 
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