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Abstract 
Matrix inversion is an essential 

computation for  various algorithms which are 

employed in multi antenna wireless 

communication systems. FPGAs are ideal 

platforms for wireless communication; however, 

the need for vast amounts of customization 

throughout the design process of a matrix 

inversion core can overwhelm the designer. 

Decomposition methods provide the analytic 

simplicity and computational convenience 

necessary for computationally intensive  matrix 

inversion. Real-time matrix inversion is a key 

enabling technology in multiple-input multiple-

output (MIMO) communications systems, such as 

802.11n. To date, however, no matrix inversion 

implementation has been devised which supports 

real-time operation for these standards. In this 

paper, we overcome this barrier by presenting a 

novel matrix inversion algorithm which is ideally 

suited to high performance floating-point 

implementation. We show how the resulting 

architecture offers fundamentally higher 

performance than currently published matrix 

inversion approaches and we use it to create the 

first reported architecture capable of supporting 

real-time 802.11n operation. Specifically, we 

present a matrix inversion approach based on 

modified squared Givens rotations (MSGR). This 

is a new QR decomposition algorithm which 

overcomes critical limitations in other QR 

algorithms that prohibits their application to 

MIMO systems. In addition, we present a novel 

modification that further reduces the complexity 

of MSGR by almost 20%. This enables real-time 

implementation with negligible reduction in the 

accuracy of the inversion operation, or the BER of 

a MIMO receiver based on this. 

 

Keywords: BLAST, matrix inversion, multiple-

input multiple- 

output (MIMO) , QR decomposition. 

I.  INTRODUCTION  
Matrix inversion is a common function 

found in  many algorithms used in wireless  

 

 

 

communication  systems. For example MIMO-

OFDM systems use  matrix inversion in equalization 

algorithms to remove  the effect of the channel on the 

signal [1], minimum mean square error algorithms for 

pre-coding in spatial  multiplexing [2] and detection-

estimation algorithms in  space-time coding [3]. 

These systems often use a small  number of antennas 

(2 to 8) which results in small  matrices to be inverted 

and/or decomposed. For  example the 802.11n 

standard specifies a maximum of  4 antennas on the 

transmit/receive sides and the 802.16  standard 

specifies a maximum of 16 antennas at a base  station 

and 2 antennas at a remote station.   Matrix inversion 

is a computationally intensive  calculation. 

Decomposition methods provide a means to simplify 

this computation. There are different  decomposition 

methods, such as QR, LU and  Cholesky, that solve 

matrix inversion. The selection of  the decomposition 

method depends on the  characteristics of the given 

matrix. For non-square matrices or when simple 

inversion to recover the data  performs poorly, the 

QR decomposition is used to  generate an equivalent 

upper triangular system,  allowing for detection using 

the sphere decomposition  or M-algorithm. For 

simpler detection via inversion of square channel 

matrices, the LU and Cholesky  decompositions are 

compatible with positive definite and nonsingular 

diagonally dominant square matrices,  

respectively[4]. 

 

FPGAs are an ideal platform for wireless 

communication due to their high processing power, 

flexibility and non recurring engineering (NRE) cost. 

However, FPGAs require vast amounts of 

customization throughout the design process and few 

tools exist which can aid the designer with the many  

system, architectural and logic design choices.  

Designing a high level tool for fast prototyping 

matrix  inversion architectures is crucial. Multi Input 

– Multi Output (MIMO) technology, such as BLAST 

[1]–[3] for WiFi or WiMAX offers the potential to 

exploit spatial diversity in a communications channel 

to increase its bandwidth without sacrificing larger 

portions of the radio spectrum. The general form of a 

MIMO system composed of transmit and receive 
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antennas is outlined in Figure. 1. Implementation of 

these systems involves satisfying the real-time 

performance requirements of the application (in terms 

of metrics such as throughput, latency, etc.), in a 

manner which efficiently exploits the embedded 

device(s) to implement such systems. 

 

 
Figure 1: MIMO system Overview 

 

A key feature of MIMO receivers is their 

reliance on matrix computations such as addition, 

multiplication and inversion— for instance, to enable 

operations such as minimum mean  square error 

(MMSE) equalization during channel detection [3]. In 

particular, complex matrix inversion has proven so 

difficult to implement that, to the best of the authors’ 

knowledge, there are no reported implementations 

capable of sustaining the 14.4 MInversions/s 

(MInv/s) and 4 latency required for modern IEEE 

802.11n MIMO systems [4]–[7]. As a result, to 

implement algorithms such as MMSE designers 

currently have to develop custom algorithms which 

avoid explicit matrix inversion [8]. This severely 

complicates the implementation process. This paper 

presents a new matrix inversion approach which 

overcomes this real-time performance barrier. We 

develop a general purpose complex-valued matrix 

inversion algorithm and study its application to and 

integration in MIMO receiver algorithms and 

embedded architectures. Specifically, we make three 

main contributions. 

 

We derive a new QR decomposition (QRD)-

based algorithm known as modified squared Givens’ 

rotations (MSGR), which overcomes key limitations 

with other QRD-based approaches which hinder their 

adoption in MIMO receiver architectures.  We show 

how the complexity of MSGR-based matrix inversion 

may be further reduced by almost 20% by removing a 

scale factor term, with little effect on its numerical 

stability, or the perceived BER of a MIMO receiver 

in which it is integrated. 

 

II. BACKGROUND 

The need to detect 52 data subcarriers within 

both the OFDM symbol and short inter frame spacing 

periods of 802.11n places extreme real-time 

constraints on embedded signal processing 

architecture for these systems. For instance, [8] 

shows that there is no current matrix inversion 

implementation capable of sustaining the 14.4 

MInvs/s with 4 latency for MMSE in 802. 11n. 

This necessitates complicated redesign of algorithms 

as fundamental as MMSE specifically to avoid 

explicit matrix inversion and clearly complicates the 

design process in a way which is not required for less 

complex matrix operations such as addition or 

multiplication. It also does not solve the long term 

problem, since algorithms such as the MMSE in [8] 

exhibit the same O( ) complexity matrix inversion 

algorithms [4]–[7]. As a result, as MIMO systems 

grow larger to incorporate more antennas, both 

solutions will tend to the same complexity. However, 

given that the matrix inversion approaches in [4]–[7] 

are all either throughput or latency deficient by a 

factor of at least 2, there appear to be substantial 

issues to be overcome before real-time matrix 

inversion in systems such as 802.11n is feasible. 

 

Matrix inversion techniques are, generally, 

either iterative or direct [9]. Iterative methods, such 

as the Jacobi or Gauss-Seidel methods, start with an 

estimate of the solution and iteratively update the 

estimate based on calculation of the error in the 

previous estimate, until a sufficiently accurate 

solution is derived. The sequential nature of this 

process can limit the amount of available parallelism 

and make high throughput implementation 

problematic [9]. On the other hand, direct methods 

such as Gaussian elimination (GE), Cholesky 

decomposition (CD), and QRD typically compute the 

solution in a known, finite number of operations and 

exhibit plentiful data and task-level parallelism.The 

complexity of a number of direct matrix inversion 

algorithms in MIMO communications systems 

composed of antennas, as well as an absolute 

complexity measure for . 

 

All these approaches exhibit similar 

complexity scaling: O( ) additions and 

multiplications and O( )  divisions. Whilst 

relatively low complexity when compared to the 

others, CD suffers from the drawback of requiring 

symmetric matrices, a condition not guaranteed to 

occur in MIMO systems, limiting its applicability. 

Despite their relatively high complexity as compared 

with CD, QRD approaches are an attractive 

alternative not only because of their ability to 

overcome the symmetric restriction, but also because 

of their innate numerical stability [10].  Furthermore, 

the plentiful data and task level parallelism available 

in these algorithms has previously been 

comprehensively exploited in a range of algorithms 

and architectures for recursive least squares (RLS) in 

adaptive beam forming and RADAR. 

 

As regards QRD algorithms, Givens’ 

rotations [14] QRD algorithms are more easily 

parallelized than Householder Transformations [15], 

but the methods for implementing Givens’ rotations, 

i.e., conventional Givens’ rotations (CGR) [14], 

squared Givens’ rotations (SGR) [16], and CORDIC 

[17] all place different constraints on 
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implementations. The authors in [18] show that fixed-

point CORDIC-based QR algorithms are more 

accurate for linear MMSE detection of practical 

MIMO-OFDM channels than SGR employing 

conventional arithmetic. However this comes at an 

excessively high area cost due to the use of CORDIC 

operators; indeed [8] and [19] report 3.5:1 and 3:1 

area efficiency advantages when employing 

conventional mathematical operators as opposed to 

CORDIC; [19] also describes a 25:1 sample rate 

advantage associated with employing conventional 

arithmetic and demonstrates that floating-point 

arithmetic  can be employed to overcome the 

precision issues outlined in [18] at no area cost. These 

factors seem to favour SGR-based implementation 

over CORDIC. Whilst CGR does not fundamentally 

require CORDIC for implementation, it does require 

widespread use of costly square-root operations, and 

is generally more computationally demanding than 

SGR  As such, the ability of SGR to avoid the use of 

CORDIC and square-root operations, reduce overall 

complexity and exploit floating-point arithmetic at no 

area cost promises an appealing blend of numerical 

stability and computational complexity. There are, 

however, a number of critical deficiencies which 

restrict its adoption in MIMO systems[10]. 

 

1) As described in Section III-B, SGR produces 

erroneous results when zeros occur on the diagonal 

elements of either the input matrix or the partially 

decomposed matrices generated during the 

triangularization. 

2) Complex-valued SGR is highly computationally 

demanding and there are no reported variants which 

exhibit 

significantly lower complexity whilst maintaining 

accuracy. 

3) There is no currently reported implementation of 

SGR based matrix inversion which can meet the high 

real-time performance demands of modern MIMO 

receivers. In this paper, we resolve these issues in a 

new SGR approach, known as MSGR. Section III 

derives MSGR specifically to overcome the issues in 

1), before Section IV describes how the complexity 

of this algorithm may be reduced by a further 20% 

with little reduction in accuracy, addressing 2).  

 

III.  MODIFIED SGR FOR COMPLEX 

MATRIX INVERSION 
A. Modified Squared Givens Rotations 

Inversion of a matrix A can be performed by 

firstly decomposing this into an upper triangular 

form, which can be more easily inverted. QRD is one 

such approach to perform this triangularization by 

decomposing A into two resulting matrices Q and R, 

such that 

A= QR                   

(1) 

Q is a unitary matrix and R is an upper triangular 

matrix. From (1) it can be implied that the inverse of 

A is the inverse of the QR product and since Q is 

unitary,  is simply its Hermitian transpose . 

Given this,  is given by (2). After QRD, inversion 

is much simpler because the inversion of the upper 

triangular matrix R can be derived using back 

substitution, as in  

= (Q  =                                    

(2) 

 

  
(3)  

Using SGR, the matrix A is decomposed as given in 

(4)–(8), where  is in general not a unitary matrix, 

and U is an upper triangular matrix 

 
The inverse of the matrix A is then given by 

(9). As U is an upper triangular matrix, its inverse can 

be found by back substitution, as in (3). In addition, 

since (10) holds, inversion of this component is 

simply a Hermitian transpose operation. 

 
 

To illustrate how MSGR extends SGR for 

complex-valued data, we use an example. Consider a 

3× 4 matrix of complex 

values as in (11). MSGR generates an upper 

triangular matrix, eliminating ,  and in a three-

stage approach 

 
Stage 1: Rotate rows r and a to eliminate element a1 

(i.e., update a1 to 1 such that 1 =0). To achieve this, 

the MSGR updating  quations can be written as (12)–

(14), where is the updated value of r 

 
From (13), (15) follows and therefore 

 
Introducing , defined by (17), then combining (16)–

(18) allows the update process for to be expressed as 
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Similarly, introducing as defined by (20), where is a 

scale factor, then (14) can be written as [16] 

 
Effectively, and have been translated to U and V -

space, respectively. Further, if (22) holds, then the 

MSGR updating 

equations from (12)–(14) can be rearranged as 

 
Stage 2: Rotate and TO ELIMINATE . Since is in -

space [given by (17)], row must now be translated to 

-space for rotation according to 

 
Equation (27) defines , where  is real as 

indicated by (15). Accordingly, updating of row b can 

be written as (28) 

(where indicates the second update of  r) 

 
Stage 3: Rotate  and  to eliminate  . To carry out 

these rotations, must be translated from V-space to U-

space and  must be translated to V-space, as 

described in 

\  

Therefore, if we let the updated w= , then 

the updated value of V= . This implies that the 

updated scale factor  must be used to translate  in 

order to use  as the new V-space vector for further 

processing. The MSGR sequence of operations is 

illustrated in Figure. 2. 

 
Figure 2: MSGR operation sequence. 

 

The final phase of translating the last row to 

U -space is necessary in order to make the diagonal 

element in this row a real value. The MSGR method 

for the general case is described using (31)–(33) 

where is the th column being processed. 

 
These three stages define the sequence of 

operations of MSGR. There are, however, a number 

of specific conditions under which SGR cannot 

operate properly and produces erroneous results; this 

situation is maintained in MSGR. The nature of these 

cases and a resolution to the resulting operational 

issues is presented in Section III-B. 

 

B. Processing Zero Values Incurred on the Matrix 

Diagonal 

To this point, it has been assumed that . 

However, zeros can arise either in the input matrix or 

during phases of rotations, as illustrated in Figure 3. 

Rotating two rows which have pairs of adjacent 

equal-valued elements on the diagonal will result in 

zeros on the first element (as desired) but also the 

undesirable occurrence of zeros in the diagonal 

position of the lower rotated row. During the next 

phase of rotations, (i.e., rotations to zero the lower 

diagonal elements in the next column) the first 

element of the -space is zero, leading to incorrect 

operation of (31)–(33). 

 
Figure 3: Diagonal zero element arisal. 

 

Due to this, an operational caveat must be 

applied before further rotations can be carried out. In 

[16], Dohler proposed a solution for dealing with uk = 

0, as given in 

 
Despite this, the condition of both has not uk 

= vk = 0 previously been considered, and the 

solutions proposed in (34) prohibit further processing 

based on these updated values. For example, 

translation of a row from V-space to U -space (such 

as that described in (29)) is not possible using 

Dohler’s suggested updated scale factor =0 . To 

overcome this problem, a novel solution uk = 0 for 
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uk 0 , which permits subsequent processing, as well 

as a solution for uk = vk = 0, which has not been 

previously considered, is given in 

 
This caveat fully defines MSGR-based 

matrix triangularization and has resolved the 

outstanding barriers to employing SGR for complex-

valued matrix inversion. It remains to convert the 

triangularized matrix to the inverse, which requires a 

suitable back-substitution operation. This back-

substitution process is outlined in Section III-C. 

\ 

C. MSGR-Based Matrix Inversion 

Recalling (4) and (9), MSGR decomposes 

the input matrix as A= QA , which may be 

inverted as A
-1

= U
-1

(QA  
-1

. Inversion of the 

upper triangular matrix can be computed using back-

substitution on the result of the MSGR operation, as 

in (36) where G= U
-1

 

 
Given this back-substitution operation, 

according to (9), MSGR-based matrix inversion may 

be split into three sub-operations: decomposition of 

the input matrix A into the upper triangular matrix U, 

formation of U
-1

from U via back-substitution, and 

finally multiplication by (QA  
-1 

to form the 

product U
-1

(QA  
-1

. We can use this to formulate 

an operational model of MSGR-based matrix 

inversion to complement the mathematical model 

described thus far. 

If we reformulate (9) as U= (QA  
-1

A
 
, 

then (QA  
-1 

can be considered to be the factor by 

which A is multiplied to produce U, an operation 

which is achieved in the MSGR algorithm using 

rotations. Therefore, this factor can be isolated by 

multiplying by the identity matrix I, which is 

equivalent to rotating I in the same manner as A. 

Therefore, processing immediately after produces the 

output (QA  
-1

. These two factors (U and 

(QA  
-1

) are produced by an MSGR array. 

The formation of U
-1

 from U via back-

substitution, and subsequent multiplication by 

(QA  
-1 

is then performed by an Invert and 

Multiply (IAM) Array. Dependence graphs of the 

MSGR and IAM arrays and the dataflow. The MSGR 

array produces an upper triangular matrix U given an 

input matrix A. It is also used to produce the 

component (QA  
-1 

given an input identity matrix . 

It consists of two classes of operational unit: 

boundary cells  which translate the input data vectors 

to U-space and internal cells for calculation of 

rotation angles and subsequent rotation of the input 

data. Note the bi-modal operation of these cells, 

which depends on whether the cell processes diagonal 

or off-diagonal elements—diagonal elements of the 

input matrix are tagged with a flag (e.g. , ) as 

shown in Figure 4. Furthermore, the zero-value 

operational caveat described in Section III-B (i.e., uk 

=0 ) is evident in these cells. Similarly, the IAM array 

comprises boundary cells  and internal cells which 

carry out both the inversion of U by back-substitution 

and subsequent multiplication by (QA  
-1

. These 

finalize the MSGR-based matrix inversion algorithm. 

      

Whilst our primary motivating application 

for developing this new matrix inversion approach is 

MIMO systems, it is evident from the algorithm 

description that MSGR-based matrix inversion can be 

used for inversion of complex matrices in any 

application. Since it is derived from SGR, MSGR 

benefits from SGR’s inherent numerical stability. To 

maximise the performance of embedded 

implementations of this algorithm, this complexity 

should be reduced so far as is possible without 

significantly reducing the accuracy of the result. In 

Section IV we describe a technique to achieve this 

and analyze the effect of this simplification on the 

accuracy of MSGR-based matrix inversion with 

respect to a number of other standard approaches and 

on the performance of a state-of-the-art MIMO 

receiver system. 

 

IV. REDUCED COMPLEXITY MSGR-

BASED MATRIXINVERSION FOR 

BLAST MIMO 

A. Reduced Complexity MSGR-Based Matrix 

Inversion: 

In this section, we propose to remove the 

scale factor and its associated computations (as 

described in Section III-C) from the MSGR cells to 

reduce the complexity of MSGR-based matrix 

inversion. Using MSGR without the -factor, the 

matrix A is decomposed as in 

                                                              

(37) 

 is not normally an unitary matrix. Since 

multiplication of the matrix rows by the scale factor 

ω  in (20) and (31) does not affect the matrix 

properties, then the decomposition of using (37) 

compared to standard MSGR (4), does not influence 

the properties of  U  and Uw i.e., they are both 

invertible upper triangular matrices. Therefore, for 

MSGR without the ω factor,  Uw  is an invertible 

upper triangular matrix and the inversion of A  can be 

given as in 
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(38) 

Once all ω -related computations have been 

removed, the MSGR array now produces an upper 

triangular matrix  Uw   given an input matrix A It 

also produces the component  given an input 

identity matrix . As Uw  is an upper triangular matrix, 

its inversion can be found by back-substitution. This 

inversion and multiplication by    is carried out 

in the IAM array, as for the MSGR algorithm with -

factor included. It compares the number of operations 

required for MSGR-based inversion of a 4 x 4 matrix 

when the –factor has been included and excluded. As 

this shows, removing the ω factor has the significant 

effect of reducing the number of multiplications and 

divisions by 19% and 18%, respectively. This 

represents a considerable performance advantage for 

real-time implementation, in particular the reduction 

in the number of complex division operations, since 

these are relatively expensive on implementation. 

However, whilst the complexity reduction offered by 

removing the ω factor is clearly attractive, it is only 

advantageous if it does not significantly reduce the 

accuracy of the resulting inverted matrices, or the 

accuracy of any MIMO receiver algorithm built upon 

MSGR-based matrix inversion. These two factors are 

analyzed in Section IV-B and -C, respectively 

 

B. Reduced Precision MSGR Accuracy Analysis: 

The effect of removing the -factor on the 

accuracy of the resulting inverted matrix is described 

in the graphs of Figure. 4. These two graphs measure 

the deviation of the product of the original matrix and 

its inverse from the matrix (y axis) for each of 200 4 

x4 MIMO rich scattering Rayleigh-fading channel 

matrices, which are enumerated on the axis.  

 
(a) 

 

 
(b) 

Figure 4. ω-less MSGR-based matrix inversion 

accuracy comparison. (a)Floating-point matrix 

inversion error. (b) Fixed-point matrix inversion 

error. 

 

To help gauge the accuracy of these results, 

the errors encountered by alternative schemes are also 

included. For floating-point data, we compare with 

the results of complex matrix inversion as 

implemented using the LAPACK linear algebra 

package (in this case implemented in the NAG 

Matlab toolkit)in Figure 4(a), while Figure 4(b) 

compares the accuracy of fixed-point MSGR with 

CORDIC-based matrix inversion. The results are 

shown in order of ascending error in Figure 4, for 

easier interpretation. Figure 4(a) shows that the errors 

encountered in MSGR- based matrix inversion are, 

more or less, the same as those encountered using 

LAPACK, and also show the expected increase in 

absolute error when single precision data is used. 

Figure 4(b) shows a similar relationship between 

fixed-point MSGR and CORDIC, for various word 

size data. The dramatically larger errors encountered 

for a small number of matrices [represented by the 

spikes at the end of the distributions in Figure4(b)] 

are due to the occurrence of divide by zero 

operations, and occur consistently in both MSGR and 

CORDIC-based algorithms. However, the major 

trend to note from Figure 4 is that reduced 

complexity MSGR-based matrix inversion, without 

the factor, has minimal impact on the accuracy of the 

final solution, and provides solutions as accurate as 

the comparable techniques. 

 

C. MSGR-Based Matrix Inversion in BLAST 

MIMO Receivers: 

Real-time matrix inversion is vital in MIMO 

systems, for operations such as MMSE-based channel 

detection, as described by (39). Here we study the 

effect of removing the -factor on the BER of an 

MMSE-based BLAST receiver system, specifically a 

Turbo-BLAST (T-BLAST) scheme [3], [12] 

 

                   (39) 
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Here  r is the received signal, H  is the 

channel matrix and x  is the estimate of the 

transmitted signal. To illustrate the effect of removing 

the -factor, Figure 5 shows the BER performance of a 

4 x 4 T-BLAST receiver on a variable signal-to-

noise-ratio (SNR) rich scattering Rayleigh-fading 

channel, under a variety of word size constraints with 

w  either included or excluded. There are a number of 

trends evident in Figure  5. The close proximity of the 

curves for the variants including and excluding the ω 

factor in Figure 5 (which in the single precision, 20 

bit floating-point and 32 bit fixed-point cases make 

the curves indistinguishable) is that there is little 

degradation in the performance of the T-BLAST 

receiver whether the ω factor is included or excluded. 

Indeed, for 24 and 16 bit fixed-point, excluding the -

factor actually lowers the BER at high SNR in this 

simulation. In addition, the figure shows the benefit 

of adopting reduced word size floating-point 

arithmetic—not only due to the resource and 

throughput advantages described in Section II, but 

also due to the clear accuracy advantage that 20 bit 

floating-point holds over even 32 bit fixed-point.  

 

 
Figure 5: BER performance of MSGR-based T-

BLAST MIMO transceiver 

 

Finally, Figure. 5 shows that when 16 bit 

fixed-point data is employed, the receiver 

performance degrades to the point where reliable data 

transmission is not possible. Thus, MSGR-based 

matrix inversion exhibits considerable numerical 

stability with or without the -factor, and whilst not the 

least computationally complex option for matrix 

inversion, the reduction in computational complexity 

enabled by excluding the -factor, coupled with the 

high levels of data and task parallelism inherent in the 

algorithm, suggests considerable potential for high 

performance implementation of MSGR-based matrix 

inversion.  

 

V CONCLUSION 
Explicit matrix inversion is a major 

bottleneck in the design of embedded MIMO 

transceiver architectures. Until now, there has been 

no appropriate solution to this problem for state-of 

the- art MIMO systems, such as those in 802.11n 

systems, with the large disparities between required 

and actual performance indicating the need for a 

thorough review of both algorithms and architectures 

employed. The work presented in this paper has 

solved this problem. We have derived Modified 

Squared Givens’ rotations (MSGR), an algorithm for 

QR-based matrix triangularization and inversion 

which overcomes deficiencies in the standard SGR 

algorithms. This provides a complex-valued matrix 

inversion method which not only overcomes key 

factors for integration in MIMO systems, but also 

enables a suitable mechanism for complex matrix 

inversion more generally. Moreover, we have shown 

that the computational complexity of the algorithm 

may be further reduced by almost 20% with minimal 

impact on the accuracy of the inverted matrix or the 

perceived BER of a BLAST MIMO receiver based 

upon it. 
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