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Abstract 
Control problems in process industries are 

dominated by nonlinear, time varying behaviour, 

different characteristics of various sensors; multiples 

control loops and interactions among the control 

loops. Conventional controllers can control a process 

to a specific performance, if it is tuned properly and if 

the sensors and associated measurement circuits are of 

high quality and moreover, only if the process is 

linear. Now a days we use model based controller. The 

first step in model based control design is modelling 

the plant to be controlled. The System identification 

deals with the building mathematical model of the 

dynamic process using input-output data. A simple 

second order transfer function would be useful in 

designing the controller. In this paper a linear reduced 

order model of Alstom gasifier has been identified 

using Prediction error algorithm. The 100% load 

condition was identified among three operating 

conditions 0%, 50% and 100%.  

 

1. Introduction 
These days the major source of electricity in India 

is produced from thermal power i.e., from coal. The 

vast resources of coal we have are not of high carbon 

content. The type of coal primarily mined in India is 

lignite which has less carbon content. We are not 

being able to maximize the output from the power 

plants using these coals only because of the inferior 

quality of coal. As a result there occurs much wastage 

of these valuable resources. Integrated gasification 

combined cycle (IGCC) provides a suitable solution to 

this problem. In this process coal is converted into fuel 

gas which in turn is used for generating electricity. 

The efficiency by this process is much higher than the 

conventional process. Gasification is a thermo-

chemical process, that convert any carbonaceous 

material (Solid Fuel-coal) in to combustible gas 

known as "producer gas or syngas" by partial 

oxidation process.  

 

During gasification, the coal is blown 

through with oxygen and steam while also being 

heated. Oxygen and water molecules oxidize the coal 

and produce a gaseous mixture of carbon dioxide 

(CO2), carbon monoxide (CO), water vapour (H2O), 

and molecular hydrogen (H2) along with some by- 

 

products like tar, phenols, etc. are also possible end 

products. This process has been conducted in-situ 

within natural coal and in coal refineries. The desired 

end product is usually syngas (i.e., a combination of 

H2 + CO), but the produced coal gas may also be 

further refined to produce additional quantities of H2: 

 

3C (i.e., coal) + O2 + H2O → H2 + 3CO  ----------(1) 

 

Coal can be gasified in different ways by properly 

controlling the mix of coal, oxygen, and steam within 

the gasifier. There are also numerous options for 

controlling the flow of coal in the gasification section. 

Most gasification processes use oxygen as the 

oxidizing medium. Integrated gasification combined 

cycle (IGCC), produces power using the combination 

of gas turbine and steam turbine which yields 40% to 

42% efficiency. The fuel gas leaving the gasifier must 

be cleaned of sulfur compounds and particulates. 

Cleanup occurs after the gas has been cooled, which 

reduces overall plant efficiency and increases capital 

costs. However, hot-gas cleanup technologies are in 

the early demonstration stage. World gasification 

capacity is projected to grow by more than 70% by 

2015, most of which will occur in Asia, with China 

expected to achieve the most rapid growth. Our 

objective of this paper is to enhance the efficiency of 

gasification process by identifying the lower order 

model of the system, which can be used for designing 

model based control strategies. 

 

2. The Alstom Gasifier Model 
The coal gasifier model was developed by 

engineers at the Technology Centre(Alstom). 

Originally it was written in the Advanced Continuous 

Simulation Language (ACSL), before being 

transferred to MATLAB/SIMULINK to facilitate the 

design and evaluation of control laws. All the 

significant physical effects are included in the model 

(e.g., drying processes, desulphurisation process, 

pyrolysis process, gasification process, mass and heat 

balances) and it has been validated against measured 

time histories taken from the British Coal CTDD 

experimental test facility. The benchmark challenge 

was issued in two stages. The linear models 

representing three operating conditions of gasifier at 

http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Oxidize
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Carbon_monoxide
http://en.wikipedia.org/wiki/Water_vapour
http://en.wikipedia.org/wiki/Molecular_hydrogen
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0%, 50% and 100% was issued in 1977. Roger Dixon 

,et.al [1,2] had issued the detailed specification of first 

challenge. Second round challenge which included 

load change test and coal disturbance test was issued 

in 2002. More details concerning the second 

challengeand  a review of gasifier modelling can be 

found in [3,4].  The described model is a state space 

model with model order of 25. It is relatively difficult 

to implement control laws on such a nonlinear process 

model which has an order of 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.A schematic of Gasifier 

 

 

A schematic of the plant is shown in Figure 1. 

The coal gasifier is a highly non-linear, multivariable 

process, having five controllable inputs and four 

outputs with a high degree of cross coupling between 

them. Other non-control inputs for this process model 

include boundary conditions, adisturbance input 

(PSINK) which represents pressure disturbances 

induced as the gas turbine fuel inlet valve is either 

opened or closed, and a coal quality input.  

In the gasification process, pulverised coal and 

limestone are conveyed by pressurised air into the 

gasifier. The air and injected steam fluidise the solids 

in the gasifier and reacts with the carbon and volatiles. 

The remaining char is removed as bed material from 

the base of the gasifier or carried out of the top of the 

gasifier as elutriated fines with the product gas. The 

quality of the produced gases depends on the calorific 

value and many other factors such as the pressure of 

the air and steam to the bed mass and thus making the 

gasifier a highly coupled system. 

2.1 Inputs and Outputs of Gasifier 

The controllable inputs are: 

1. Char extraction flow- WCHR (kg/s) 

2. Air mass flow - WAIR (kg/s) 

3. Coal flow - WCOL (kg/s) 

4. Steam mass flow - WSTM (kg/s) 

5. Limestone mass flow - WLS (kg/s) 

 

The disturbance input is: 

6. Sink pressure - PSINK (N/m
2
) 

 

The controlled outputs are: 

1.fuelgas calorific value-CVGAS (J/kg) 

2. bed mass - MASS (kg) 

3. fuel gas pressure - PGAS (N/m
2
) 

4. fuel gas temperature - TGAS (K) 

 

3. System identification 
System identification deals with the mathematical 

modelling of dynamic system using measured input-

output data. Unlike modelling from first principles, 

which requires an in-depth knowledge of the system 

under consideration, system identification methods 

can handle a wide range of system dynamics without 

knowledge of the actual system physics. Choosing a 

suitable model structure is prerequisite before its 

estimation. The choice of model structure is based 

upon understanding of the physical systems. Three 

types of models are common in system identification: 

the black-box model, grey-box model, and user-

defined model. The black-box model assumes that 

systems are unknown and all model parameters are 

adjustable without considering the physical 

background. The grey-box model assumes that part of 

the information about the underlying dynamics or 

some of the physical parameters are known and the 

model parameters might have some constraints. The 

user-define model assumes that commonly used 

parametric models cannot represent the model you 

want to estimate.  

 

4. Model structure selection 
Seyabet.al [5] identified a linearized state space 

model for 0% load condition for implementing model 

predictive control strategy and MoreeaTaha [8] 

presented a different method for modelling. Low order 

transfer function models are suitable for control tuning 

studies. In this direction, low order transfer function 

models for a complete thermal power plant have been 

obtained by Ponnuswamyet all [6] from a highly 
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nonlinear mathematical model using system 

identification techniques. Further Rao and Sivakumar 

identified MIMO system transfer function models 

using Walsh function technique[7]. In this paper a 

MIMO linear transfer function model is identified 

from the simulated process operation data at 100% 

load conditions using the  linearized state space model 

is available for the ALSTOM benchmark process,. 

The complete transfer function expected to be in the 

form: 

1
d111 12 13 14 151

2
d221 22 23 24 252

3
31 32 33 34 353 d3

4
41 42 43 44 454 d4

5

u
GG G G G Gy

u
GG G G G Gy

= u + ×d
G G G G Gy G

u
G G G G Gy G

u

 
     
     
     
     
     
       

 

    ----------------- (2) 

 

Where, 

y1= fuel gas caloric value (J/kg) 

y2=bed mass (kg) 

y3=fuel gas pressure (N/m
2
) 

y4=fuel gas temperature (K) 

u1 =char extraction flow (kg/s) 

u2=air mass flow (kg/s) 

u3=coal flow (kg/s) 

u4=steam mass flow (kg/s) 

u5=limestone mass flow (kg/s) 

d =sink pressure (N/m
2
) 

 

5. Selection of test input signal and 

experiment execution 
Experimental data is generated either from a 

single open-loop MIMO experiment (all input 

channels excited simultaneously) or from open-loop 

SIMO experiments (one input channel excited at a 

time). Rudy Agustriyanto, Jie Zhang [9] suggested a 

method, in which a step change in input at times 500s 

and 2000s were used and the input-output data 

constitutes the estimation and validation data (one 

input channel triggered at a time). Output error 

method is used to identify a lower order transfer 

function of the Alstom gasifier. 

L.Sivakumar,AnithaMary.X[10] identified a reduced 

order transfer function models for gasifier with minimum 

IAE and ISE error criterion using Genetic Algorithm. In this 

present work the five inputs of the plant were 

simultaneously perturbed with Pseudo Random Binary 

Signal (PRBS) which were independent of inputs of 

the plant. The input perturbations amplitude were set 

to be ±10% about the full load operating point and 

10000 input-output signals were recorded. 

 

Figure 2 and figure 3 shows the input-output data. 

First 7000input-output data pairs were used to identify 

and the rest 3000 input-output data pairs were used to 

estimate parameters of five, single output (MISO) 

models. These models then combined to give five-

input, four output model. The input signals combined 

with the training output data were sampled at 1 second 

and were used to estimate the system matrices. The 

proposed algorithm was implemented to fit the 

estimated. model to the given data. 

 

 

 

 

 

Figure 2.Input Signal to the Gasifier 
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Figure 3.Output Signal of the Gasifier 

 

6. Prediction error algorithm 

The search method used for iterative parameter 

estimation is nonlinear least square estimation. It 

solves nonlinear least-squares problems, including 

nonlinear data-fitting problems. Rather than compute 

the value (the sum of squares), lsqnonlin requires the 

user-defined function to compute the vector-valued 

function 

 

An important special case for f(x) is the nonlinear 

least squares problem 

 

22

2

i

1 1
ƒ( x ) ƒi ( x ) F( X )

2 2
  ------------(3) 

 

where F(X) is a vector-valued function with 

component i of equal to ƒi(x). The basic method used 

to solve this problem is “Trust Region Methods for 

Nonlinear Minimization”. However, the structure of 

the nonlinear least squares problem is exploited to 

enhance efficiency. In particular, an approximate 

Gauss-Newton direction, i.e., a solution sto 

2

2
min Js F  ------------------------------(4) 

 

 

(whereJis the Jacobian of F(X) ) is used to help define 

the two-dimensional subspace S. Second derivatives 

of the component function ƒi(x) are not used. In each 

iteration the method of preconditioned conjugate 

gradients is used to approximately solve the normal 

equations, i.e., 

J
T
 J S = - J

T
F  --------------------------------------------(5) 

 

although the normal equations are not explicitly 

formed. 

 

In the unconstrained minimization problem, minimize 

ƒ(x), where, the function takes vector arguments and 

returns scalars. Suppose we are at a point x in n-space 

and we want to improve, i.e., move to a point with a 

lower function value. The basic idea is to approximate 

ƒ with a simpler function q, which reasonably reflects 

the behaviour of function f in a neighbourhood N 

around the point x. This neighbourhood is the trust 

region. A trial step is computed by minimizing (or 

approximately minimizing) over N. This is the trust 

region sub problem, 

minsq(s)  sN     ----------------------------(6) 

 

The current point is updated to be X+s if ƒ(X+s) 

˂ ƒ(x) otherwise, the current point remains unchanged 

and N, the region of trust, is shrunk and the trial step 

computation is repeated. 

 

7. Results and discussion 
A varity of model structures are available to assist 

in modelling asystem. The choice of the model 

structure is based upon the understanding of the 

system identificaiton method and insight and 

understanding into the the systen undergoing 

identification. Eventhen it is often beneficial to test a 

number of structures to determine the best one. 

Different model structures were defined for all the 

input-output pairs. The system was estimated by using 

first 7000 input-output samples and the remaining 
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3000 input-output samples were used for validation. 

The lower order transfer function nonlinear Alstom 

gasifier was identified.   

 

 

 
Figure 4.Validation output 

 

 

 

The identified transfer function of the Alstom 

gasifier after carefully selecting the model structures 

were found to be: 
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 ---------------(7)
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 ------------------------------(8) 
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-768.33
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 ---------(15)
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zv1; measured

m1; fit: 86.16%

zv2; measured

m2; fit: 93.98%

zv3; measured

m3; fit: 91.27%

zv4; measured

m4; fit: 97.37%
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31
2.2933e7

G (s) =
(1+ 3.3016e5s)

------------------------(17) 

 
  

32
11725(1+ 93.303s)

G (s) =
(1+112.54s)(1+ 5.1163s)

-------------(18) 

  

34
15871

G (s) =
(1+ 3.1221s)

 ----------------(19) 

 

35
53210

G ( s )
(1 394.78s )(1 423.65s )




 
--------(20) 
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


--------------------------(21) 
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G ( s )
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


----------------------------(22) 
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)(43
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


 ----------------------------(24) 

 

45
-36.738

G (s) =
(1+ 952.71s)

----------------------------(25) 

 

d1
2.9456

G (s) =
(1+1263.9s)

 ----------------------------(26) 

 

d2
-0.070376

G (s) =
(1+ 0.0049202s)(1+ 72.526s)

 ------(27) 

 

d3
-11.03

G (s) =
(1+ 0.0030731s)(1+ 0.0022361s)

------(28) 

 

d4
-0.94306

G (s) =
(1+11791s)

 ----------------------------(29) 

 

8. Conclusion 
In this paper we have examined the identification 

of multivariable linear models to be used for controller 

design which could be used for adaptive control 

schemes. The identificaiton results shows that the 

mass, temperture and pressure  have better 

approximation than CV, which means that CV is 

highly nonlinear than other outputs. A lower order 

transfer function of highly coupled nonlinear process 

was identified. An identified model with 85% 

appriximation is sufficient for adaptive control 

schemes. This model holds good for adaptive control 

schemes since its accuracy is above 85%.  The models 

obtained are control-relevant, meaning they retain 

information that is most important for control 

purposes. 
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