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Abstract:  

The present paper describes the 

movement of patients in a hospital by using 

queuing model with exponential arrival and 

service time distributions. A queuing model is 

used to determine the optimal number of beds in 

order to improve hospital care. Also, we describe 

a way of optimising the average cost per day by 

balancing costs of empty beds against costs of 

delayed patients. 
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The theoretical model 
 We consider a M/M/c queue in which the 

number of beds is fixed. We assume that, patient 

arrivals follow a Poisson process with arrival rate 

  and the service time follows Poisson distribution 

with mean  . Here,   is the average length of stay 

per patient. 

 The average number 𝑎 of arrivals during an 

average length of stay   is 



a , known as the 

offered load. From queuing theory, we see that the 

probability that, j  beds are occupied is given by 

 𝑃 𝑗 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑒𝑑𝑠 = 𝑃𝑗 =

𝑎𝑗

𝑗 !

 
𝑎𝑘

𝑘!
𝑐
𝑘=0

 , 

𝑗 = 0,1,2, … . . , 𝑐.    (1)

                         

and  𝑃𝑗 = 0 , for 𝑗 > 𝑐. 

 The probability that, all 𝑐 beds are 

occupied is given by 

𝑃𝑐 =

𝑎𝑐

𝑐!

 
𝑎𝑘

𝑘!
𝑐
𝑘=0

 

 From the above formula, we deduce that 

the probability that, all 𝑐 beds are occupied or the 

fraction of arrivals that is lost is given by 

  𝐵 𝑐, 𝑎 =
𝑎𝑐

𝑐!

 
𝑎𝑘

𝑘!
𝑐
𝑘=0

  , (2) 

      

called the Erlang’s loss formula. 

 The mean number of occupied beds is 

given by 

 

 

 

 

 

 𝑎′ = 𝑎[1 − 𝐵 𝑐, 𝑎 ]   (3) 

which is also known as the carried load. The carried 

load 𝑎′ equals that portion of the offered load 𝑎 that 

is not lost from the system. The offered load 𝑎 is the 

carried load 𝑎′, if the number of beds are infinite i.e. 

when 𝑐 = ∞, 𝑎 = 𝑎′. The lost load (𝐿𝐿), that is, the 

offered load 𝑎 that is lost from the system and is 

given by 

 𝐿𝐿 = 𝑎𝐵(𝑐, 𝑎).   (4) 

We see that, the proportion of arrivals that is lost, is 

the ratio of the lost load to the offered load, that is 

 𝐵 𝑐, 𝑎 =
𝑎𝐵(𝑐,𝑎)

𝑎
. 

 We define the bed occupancy as 

 𝜌 =
𝑎 ′

𝑐
.   (5) 

Assuming that, the system is in steady state, we 

must have 𝜌 ≤ 1. 

 

Application of the model 
The loss model (optimising the number of 

beds) 

 We consider the model where the arrival 

rate is 25  patients per day and the mean 

length of stay 10  days. In table-1, we present a 

table of various system characteristics as a function 

of the number of beds 𝑐 for a hospital. When we 

have 100 beds, the probability that, the fraction of 

arrivals that is lost i.e. lost demand probability, is 

near to zero and the bed occupancy is %5.2  i.e. on 

average there are 5.2  patients in a hospital. We can 

see from this table that, the bed occupancy is 

decreased as the number of beds increase. So, we 

can conclude that, the more number of patients can 

be admitted to the hospital with maximum of 100 

beds. 
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Table-1 The main service features ( 25  

patients per day, 10 days and the offered load 

 5.2



a ) 

Number 

of beds 

𝑐 

Lost 

demand 

probability 

𝐵(𝑐, 𝑎)(%) 

Mean 

number 

of 

patients 

(𝐿) 

Bed 

occupancy 

𝜌 (%) 

𝜌 =
𝑎′

𝑐
 

100 5.5*10
-118 

2.5 2.5 

105 4.6*10
-126 

2.5 2.38 

110 3.1*10
-134 

2.5 2.27 

115 1.6*10
-142 

2.5 2.17 

120 6.9*10
-151 

2.5 2.08 

125 2.4*10
-159 

2.5 2 

130 6.9*10
-168 

2.5 1.92 

135 1.6*10
-176 

2.5 1.85 

140 3.1*10
-185 

2.5 1.78 

145 5.1*10
-194 

2.5 1.72 

150 7.1*10
-203 

2.5 1.67 

 

From the table, we wish to have at most 100 beds in 

a hospital, because the lost demand probabilities 

approach zero rapidly. 

The cost model (optimising the average cost per unit 

time) 

 Here, beds correspond to the inventory 

where idle beds are the on-hand inventory and 

occupied beds are unfilled orders. A patient arrival 

corresponds to a demand and the subsequent length 

of stay of the patient corresponds to waiting time for 

replenishment. Patients who are turned away (i.e. 

lost demand) because there are no empty beds, 

corresponds to unsatisfied demands. 

 We consider ℎ as a holding cost per day for 

each empty bed, ℎ>0 and 𝜋 as a fixed penalty cost 

incurred for each patient that is turned away (i.e. lost 

demand), 𝜋>0. We also consider 𝑝 as a profit per 

patient per day. Therefore, the total cost to the 

customer is the sum of variable costs (treatment), 

fixed costs (holding costs), profit and penalty cost 

(of lost demand). We observe that, the average 

demand that is lost per unit time is equal to 

),( acB , the average idle-bed inventory is equal 

to )],(1[ acBac  ( by (3)) and therefore, the 

average service provider revenue per day is given by 

    

 

)],(1[)]},(1[{),()( acBpaacBachacBcr  

   (6)   

 Now, we want to find 𝑐 to maximise 𝑟(𝑐). 

This is the optimal number of beds where we 

balance the number of empty beds against the 

number of delayed patients. We note that, for a 

public health service, 𝑝 = 0. We are interested in 

maximising revenue 𝑟(𝑐) or minimising cost which 

is given by  

)]},(1[{),()( acBachacBcg      (7) 

Here, the cost minimisation means the optimal 

balance between holding cost ℎ and penalty cost 𝜋. 

 Now, we say that, we are indifferent 

between the use of the consecutive 𝑐 and  𝑐 + 1 

when 𝑔 𝑐 = 𝑔(𝑐 + 1). From this equation, we 

deduce that this equation is equivalent to   
1

1)],1(),([













h
acBacB






       (8) 

This equation shows that, the optimal choice of 𝑐 

depends only upon the parameters 



 and 

h


. It 

means that, for a given value of 𝑐, we may evaluate 

the indifference by means of a graph of 
h


 versus 




. This graph is known as the indifference curve, 

which describes equation (6). When the curves for 

different values of 𝑐 are close together, we say that, 

we are indifferent to the choice of 
h


 for given 

values of   and  . This means that, for such 

choices of 𝑐, the optimal number of beds is not very 

dependent on the ratio 
h


. 

 Here, we assume that the total cost per 

patient per day is 200.Rs , where 100.Rs  are 

incurred with respect to the bed and 100.Rs  with 

respect to the treatment. We also assume that, the 

holding cost 100.Rsh   per day and the penalty 

cost as o % of the total cost of turning away the 

patient. (Because the lost demand probabilities are 

near to zero.) 

Table-2 The values of the average cost per unit time 

)(. cgRs  

Beds 

𝑐 

𝜋

ℎ
= 20  

𝑔1(𝑐) 

𝜋

ℎ
= 30  

𝑔2(𝑐) 

𝜋

ℎ
= 40  

𝑔3(𝑐) 

100 9750 9750 9750 

105 10250 10250 10250 

110 10750 10750 10750 

115 11250 11250 11250 

120 11750 11750 11750 

125 12250 12250 12250 

130 12750 12750 12750 

135 13250 13250 13250 

140 13750 13750 13750 

145 14250 14250 14250 

150 14750 14750 14750 

 

 This table shows that, if we increase the 

penalty cost to holding cost ratio 
h


 three times 
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from 20 to 40, then the number of beds needed for 

the minimal average cost is at most 100. Here, the 

average cost remains constant as the ratio  
h


 is 

increased from 20 to 40. This means that the ratio  

h


 has no significant influence on the optimal 

number of beds. Here, we note that we do not draw 

the indifference curves. We consider the tabular 

data. 

Conclusions 

 From table-1, we can see that, for 100  

beds, the lost demand probability is near to zero and 

the bed occupancy is %5.2 . Also, the bed 

occupancy is decreased as the number of beds 

increase. 

 From table-2, we can see that, for 100  

beds, the average cost per unit time is minimum and 

it increases rapidly as the number of beds increase.  

Hence, finally we conclude that, there 

should be at most 100  beds in a hospital with 

arrival rate 25  patients per day and service 

rate 10 days per patient.  
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