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Abstract:  
Search Query Results on large databases 

(Pub Med, HPSS, and NERSC) often return a 

large number of results of which only a small 

subset is relevant to the end user. To reduce this 

information overload Ranking and categorization 

were developed earlier. Efficient navigation 

through results categorization and annotations is 

the focus of this paper. In this paper, we present a 

new system based on online shopping that 

implement the Top-K algorithm. This system 

assists that on-line shoppers navigated in most 

effective paths based on their specified criteria 

and preferences. The suggestions are continually 

adapted to choices/decisions taken by the users 

while navigating. Earlier works expand the 

hierarchy in a predefined static approach, without 

stressing on navigation cost. We show 

experimentally that the system outperforms state-

of-the-art categorization systems with respect to 

the user navigation cost. We present an 

experimental study that our algorithm 

outperforms state-of-the-art ranking systems with 

respect to the navigation flow. 

Index Terms: Pub Med, Top-k algorithm, Effective 

Navigation, Ranking, and Categorization etc. 

I INTRODUCTION 
On-line shopping is extremely popular 

nowadays, with millions of users purchasing products 

in shops that provide a Web interface. It is common 

for on-line shops to offer a vast number of product 

Options and combinations thereof [4]. This is very 

useful but, at the same time, makes shopping rather 

confusing. It is often very difficult to and the specific 

navigation path in the site that will lead to an 

“optimal” result, best suiting the needs and 

preferences of the given user. 

 Consider for example an on-line store which 

offers various processors, screens etc; that allows 

users to assemble computers from a variety of 

component parts. Consider a user that is interested in 

buying a cheap Intel processor computer. Suppose  

 

user can get a good price by first registering to the 

store’s customers club. After passing through some 

advertisement page that provides such members with 

discount coupons, and finally buying a certain set of 

components (including a certain Intel processor) that, 

when purchased together with the above coupons, 

yields the cheapest overall price. Clearly, the user 

might be interested in knowing this information if she 

is after the deal with the best price [9]. Alternatively, 

the user may prefer combinations where the delivery 

time is minimal, or may want to use the experience of 

others and view the most popular navigation paths.

 We present here ShopIT (Shopping 

assistant); a system which suggests the most effective 

navigation paths based on preferences and specified 

criteria. When the user starts her navigation in the 

site, she may specify her constraints and her ranking 

function of interest, and have the system compute and 

propose (an initial set of) top-k ranked navigation 

flows[2], out of these conforming to the constraints. 

The user then continues her navigation taking into 

account the presented recommendations, but may 

also make choices different than those proposed by 

the system.   

Several challenges arise in the development 

of such a system. First, the number of possible 

navigation flows in a given web-site is not only large 

but infinite, as users may navigate back and forth 

between pages. Hence, enumerating and ranking all 

relevant flows is clearly not an option. Second, it is 

critical to maintain a fast response time in order to 

provide a pleasant user experience. Finally, as 

explained above, the computation must be flexible 

and adaptive, to account for run-time user choices 

and our algorithm is optimal [2] and very efficient. 

II TECHNICAL BACKGROUND 
 We provide in this section some background 

on our model for Web applications and for queries 

over such applications. 

Web-based Applications: Our model for Web 

applications, introduced in [1,6], abstractly models 

applications as a set of (nested) DAGs - Directed A 
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cyclic Graphs - each intuitively is corresponding to a 

specific function or service[1,3]. The graphs consist 

of activities (nodes), and links (edges) between them, 

that detail the execution order of activities. Each 

activity is represented by a pair of nodes, the first 

standing as the activity’s activation point and the 

second as its completion point. Activities may be 

either atomic, or compound. In the latter case their 

possible internal structures (called implementations) 

are also detailed as DAGs, leading to the nested 

structure. A compound activity may have different 

possible implementations, corresponding to different 

user choices, link traversals, variable values, etc. 

These are captured by logical formulas (over the user 

choices, variable values, etc.) that guard each of the 

possible implementations. A Web-based application 

may be recursive, where an (indirect) implementation 

of some activity a contains another occurrence of a. 

Navigation Flow: A navigation flow[6] (in a given 

application) corresponds to concrete choices of 

implementations for compound activities. For 

instance, a possible navigation flow in our computer 

store is one where the user first reviews the possible 

deals, then chooses to purchase an Intel Motherboard, 

subsequently cancels her choice, buys a discount 

coupon and selects a CPU by HP, etc. Note that the 

number of possible navigation flows may be 

extensively large even for relatively small-scaled 

applications. 

Ranking: The rank[6] of navigation flows is derived 

using two functions, namely, cWeight and fWeight. 

Function cWeight assigns a weight to each single 

(implementation) choice within a flow, depending on 

the course of the flow thus far and the objective that 

the user wishes to optimize, e.g., monetary cost or 

likelihood. Function fWeight aggregates the per-

choice weights in a single score for the entire flow. 

Top-k query results: The users’ search criteria[6] are 

modeled by queries. These use navigation patterns, 

an adaptation of the tree patterns, found in existing 

query languages for XML, to nested application 

DAGs [1]. Our top-k query evaluation algorithm gets 

as input the schematic representation of the 

application, the user query and the chosen ranking 

metric, and efficiently retrieves the qualifying 

navigation flows with the highest rank. The algorithm 

operates in two steps. First, it generates a refined 

version of the original application representation, 

describing only flows that are relevant to the user 

request. Then it greedily analyzes the refined 

representation to obtain the best-ranked flows.  The 

choices made by the user throughout the navigation 

are modeled as additional constraints/relaxations to 

the original query, and an efficient adaptive 

evaluation technique is employed to update the query 

result. 

III SYSTEM OVERVIEW 
We give here a brief overview of the main 

components and their interaction. Figure 1 depicts the 

system architecture. 

Store Model[6]: The abstract model of the on-line 

store application and its cWeight information are 

stored in the ShopIT database. 

 The first component, namely the application 

abstract model, was manually configured. Many 

Web-based applications are specified in declarative 

languages and then an automated extraction of their 

abstract model structure is possible. The products 

information, including compatibility relation in-

between products, as well as additional parameters 

such as products cost, discount deals, shipment time 

etc. were automatically retrieved via a standard Web 

interface. The cWeight function was automatically 

derived to reflect this data. 

 

 Fig 1: System Architecture 

Query Engine: The query engine[6] is composed of 

two components. The first is the Top-k queries 

evaluator that receives, as input, from the user, her 

search criteria and chosen ranking metric, and 

computes the initial suggestion of top-k qualifying 

navigation paths. ShopIT supplies a Graphical User 

Interface that allows users to specify their criteria for 

search. The specified criteria are compiled into a 

navigation pattern, which in turn is evaluated over the 

Web Application model. 

 The second component is the adaptive 

recommendation engine that is continuously 

informed about the user actual navigation choices (or 
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changes to her search criteria and ranking choice) and 

adapts the offered top-k suggestions accordingly. We 

have designed the query engine so that it is accessible 

through an API that allows the placement of user 

queries and preferences, and the retrieval of the 

corresponding recommendations. This general API 

can be used to incorporate ShopIT within a given 

website. 

The ShopIT virtual store: Users interact with a 

virtual store[6] that wraps the original store. User 

actions are passed, through the API, to the ShopIT 

engine and to the (original) store application. The 

obtained recommendations are then presented to the 

user alongside with the resulting store screens. Each 

recommendation consists of a sequence of proposed 

actions, such as “click on button X”, “choose option 

Y at box Z”, etc., and is accompanied by its 

corresponding weight (e.g. total price, likelihood, 

etc.). 

IV OPTIMAL TOP-K ALGORITHM 
TOP-K Algorithm [2, 5]: we define an EX-

flows table, F Table, (compactly) maintaining the 

top-k (sub) flows for each equivalence class. It has 

rows corresponding to equivalence classes, and 

columns ranging from 1 to k. Each entry contains a 

pointer to the corresponding sub-flow. In turn, every 

implementation of a compound activity node in this 

sub-flow is not given explicitly, but rather as a 

pointer to another entry in F Table, and so on. This 

guarantees that the size of each flow representation is 

bounded by the table size, avoiding the blow-up of 

EX-flow sizes. In what follows, every EX-flow is 

represented via a single pointer to an entry at F Table. 

The algorithm then operates in two steps. First, it 

calls a subroutine FindFlows which computes a 

compact representation of the top-k EX-flows within 

F Table, and then it calls Enumerate Flows that uses 

the table to explicitly enumerate the EX-flows from 

this compact representation. We next explain the 

operation of these two subroutines. 

Find Flows: The Find Flows procedure maintains 

two priority queues Frontier and Out of (partial) EX-

flows, ordered by fWeight. At each step, Frontier 

contains all flows that still need to be examined. 

Upon termination, Out will contain the top-k flows. 

Initially, Out is empty and Frontier contains a single 

partial EX-flow, containing only the BP root. At each 

step, we pop the highest weighted flow e from 

Frontier. If e is a full (partial) flow, the algorithm 

invokes Handle Full (Handle Partial) to handle it. 

HandleFull: First, the given full EX-flow e is 

inserted into Out. If Out already contains k flows, 

then we terminate. Otherwise, every node appearing 

in e, along with its preceding sub flow defines an 

equivalence class, used as entry at F Table. The sub-

flow rooted at the node is then inserted into the table 

at that entry, if it does not appear there already. Last, 

all EX-flows that were put by Handle Partial due to a 

node participating in e, are returned to Frontier.

 

HandlePartial: Handle Partial is given a partial flow 

e and considers all possible expansions e′ of e. To 

that end, we assume the existence of an All Exps 

function that allows to retrieve, given a partial flow e, 

all of its expansions (i.e. all e′ s.t. e → e′ ), along with 

their weights. The algorithm first retrieves the next-

to-be- expanded node v of e, and looks up its 

equivalence class in F Table. If no entry is found, it 

means that we haven't encountered yet an equivalent 

node during the computation. We thus create a new 

row in F Table for this equivalence class.  Entries in 

this row will be filled later, when corresponding full 

flows are found. Then, we obtain all expansions of e, 

and for each such expansion we compute its fWeight 

value, and insert it to the Frontier queue for 

processing in the following iterations. Otherwise, if 

the appropriate row already exists in the table, we 

consider the partial EX-flows that appear in this row 

but were not yet considered for expanding e. If no 

such EX-flow exists, (although the table entry exists), 

it means that e was previously reached when 

expanding some other node v′ (which appears in e as 

well). We may compute the next best EX-flow 

without further expanding e. Thus, we put e on hold. 

It will be released upon finding a full flow originating 

in v′. If an unused EX-flow exists, we take the 

highest ranked such EX-flow and “attach" it to v, that 
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is, we make v point to this flow. We now compute 

the weight of the obtained EX-flow and add it to 

Frontier. 

 

V EXPERIMENTAL STUDY 
We present an experimental study of our 

algorithm based on synthetic and real-life data. The 

study evaluates the performance of the algorithm in 

practice relative to the worst-case bounds implied by 

our analysis, examining cases where optimality is 

guaranteed as well as cases where it is not. 

Note that TOP-K gradually fills in F Table, 

and halts once it discovered the top-k flows. We 

implemented a variant of TOP-K, termed WC (for 

worst-case), that fills in all entries of F Table before 

terminating, and compared the performance of TOP-

K to WC that provides a comparison to [8]. A 

comparison of TOP-K to WC demonstrates the 

significant performance gains achieved by our new 

algorithm. 

A representative sample of the experimental 

results is presented below. Figure 1(a) examines the 

execution times (in seconds) of TOP-K and WC for 

increasing number (in thou- sands) of equivalence 

classes. (The scale for the time axis in all graphs is 

logarithmic). The number k of requested results here 

is 100. (We will consider varying k values below).  

The figure shows the performance of TOP-K for 

cWeight values in the range [0, 1] with different 

distributions. This includes uniform and normal 

distributions with average value of 0.5 and varying 

standard deviation of 0.2, 0.1, and 0 (the latter 

corresponding to all-equal cWeight values). WC 

always fills in all entries of the FTable, thus is not 

sensitive to the cWeight distribution, and we show 

only one curve for it. 

 

Figure 1(b) examines the execution times of 

WC and TOP-K for a growing number k of requested 

results (for the same distributions of cWeights as 

above). The number of equivalence classes here is 

200K and the history bound is 5. We can see that the 

running time increases only moderately as k grows, 

with TOP-K steadily showing significantly better 

performance than WC. 

 

Figure 1(c) examines the e®ect of the 

monotonicity strength of the weight function, on 

TOP-K's execution time. We fix k, the number of 

equivalence classes, and the history bound (to 100, 

40K, and 5, resp.), and vary the percentage of neutral 

weights, with the non-neutral weights uniformly 

distributed. At the left-most end, there are no neutral 

weights and TOP-K is guaranteed to be optimal; at 

the right-most (very unlikely) case all weights are 

neutral, and TOP-K and WC exhibit the same 

execution times (as the flows table must be fully 

filled). We see that the performance of TOP-K is 

significantly superior even when the conditions for 

optimality do not necessarily hold. In particular, in all 

realistic scenarios where less than 90% of the weights 
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are neutral, TOP-K improves over WC by more than 

75%. 

 

 

Fig. 1(d) depicts results for 15 representative 

such subsets, involving increasing counts of 

equivalence classes-the leading factor in the 

performance of the TOP-K algorithm. At the extreme 

right, all equivalence classes participate in the 

computation. Observe that TOP-K outperforms WC 

by a factor of over 98%, demonstrating scalability 

and good performance. 

VI CONCLUSION 
Web-sites for on-line shopping typically 

offer a vast number of product options and 

combinations thereof. While this is very useful, it 

often makes the navigation in the site and the 

identification of the “ideal” purchase (where the 

notion of ideal differs among users) a confusing, non-

trivial experience. This demonstration presents 

ShopIT (Shopping assistant), a system that assists on-

line shoppers by suggesting the most effective 

navigation paths for their specified criteria and 

preferences. The suggestions are continually adapted 

to choices/decisions taken by the users while 

navigating. ShopIT is based on a set of novel, 

adaptive, provably optimal algorithms for TOP-K 

query evaluation in the context of weighted BPs 

(business process). We analyzed different classes of 

weight functions and their implications on the 

complexity of query evaluation, and have given, for 

the first time, a provably optimal algorithm for 

identifying the top-k EX-flows of BPs [5]. We 

showed that our algorithm outperforms by an order of 

magnitude. 
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