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ABSTRACT      
This paper investigates the machining 

parameters affecting the roughness of surfaces produced 

in hard turning process for three different materials like 

EN8 steel, Aluminium alloy and Copper alloy under dry 

conditions. Three parameters were selected for study: 

cutting speed, feed and material hardness.  

For the three materials like Aluminium alloy, 

copper alloy and EN8 steel impact of increase in feeds 

versus decrease in cutting speeds with constant depth of 

cut adopted to analyze the influence of these parameters 

on the generated surface roughness.  

Regression analysis using MINITAB software 

for all the three material turning operation data mining 

was used to create model for the prediction of the 

average surface roughness (Ra) in terms of cutting speed, 

feed and material hardness and 67.2% of R
2
 and 47.52% 

of R
2
(adj) were obtained.  

Keywords: Roughness, Engineering Materials, 

Regression Analysis, MINITAB. 

1. INTRODUCTION 
Metal cutting technology has grown rapidly with a 

common goal of achieving higher machining process 

efficiencies and high surface roughness. As the Surface 

roughness is one of the most important properties and is 

an indicator of surface quality specified by most of the 

customer requirements in machining process, it really 

necessitates the products to be of a very high surface 

quality to grab the product appearance, function, utility, 

heat transmission and reliability. To have high surface 

roughness, one has to do several machining cuts of each 

and every product, thereby making its processing time 

and production costs to be increasing. So, Hard turning 

of various engineering materials in a single cut operation, 

in order to reduce processing time, production cost and 

setup time with high surface roughness came into 

existence. Failures of mechanical parts due to surface 

roughness, sometimes leads to high cost damages, as in 

case of engine cylinder blocks, pistons etc. The quality of 

the produced components surface roughness can not only 

be evaluated using machining parameters like cutting 

speed, feed rate, depth of cut and their relative 

interactions but also with inclusion of the tool geometry 

wear. 

 

 

 

 

 

The term ―Regression‖ was introduced in the eighteenth 

century by Sir Francis Galton, cousin of C. Darwin, and 

had a pure biological connotation.  

 

Regression analysis models the 

predictor–response relationship between independent 

variables and dependent variables. By the use of 

regression, curve fitting can be done as generalized linear, 

nonlinear, Poisson regression, log-linear, regression trees, 

least square, spline, Parametric, fractal etc. 

2. LITERATURE REVIEW 
Literature on the measurement of surface 

roughness using single and multi-point cutting tool on a 

single work piece materials using different machining 

parameters like feed, speeds, depth of cut and tool 

geometry are well documented [1-4]. In turning 

processes, a proper selection of cutting conditions 

generates high surface roughness finish and less 

dimensional errors. Hence, proper estimation of surface 

roughness based on cutting parameters and tool 

geometry has focused on number of researchers study.  

T. Tamizharasan  et al.[1] analyzed 18 different 

machining conditions on commercially available engine 

crank pin material, with three different grades of 

polycrystalline cubic boron nitride (PCBN) tool inserts 

for describing the various characteristics in terms of 

component quality, tool life, tool wear, effects of 

individual parameters on tool life and material removal, 

and economics of operation in hard turning operation 

performed on a lathe and measured surface roughness 

using MITUTOYO SURF III tester. Dilbag Singh. P. 

Venkateswara Rao [2] investigated the effects of cutting 

conditions and tool geometry on the surface roughness in 

the finish hard turning of the bearing steel (AISI 52100) 

with Mixed ceramic inserts made up of Aluminium oxide 

and titanium carbonitride (SNGA). This study showed 

that the feed is the dominant factor determining the 

surface finish followed by cutting velocity and then tool 

rake angle and a mathematical model for the surface 

roughness were developed by using the response surface 

methodology. Turnad L. Ginta et. Al [3] focused on 

developing an effective methodology to determine the 

performance of uncoated WC-Co inserts in predicting 

minimum surface roughness in end milling of titanium 

alloys Ti-6Al-4V under dry conditions. Response surface 

methodology was employed to create an efficient 

Empirical model for Surface Roughness in hard turning based on 

Analysis of Machining Parameters and Hardness values of various 
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analytical model for surface roughness in terms of 

cutting parameters and Surface roughness values were 

measured using a surface roughness measuring 

instrument- Mitutoyo Surftest model SV-500. R.A. 

Mahdavinejad, H. Sharifi Bidgoli [4] highlighted the 

methods of predicting the surface roughness, like based 

on the trends of machining theories, .Based on the 

designed tests, based on Artificial intelligence such as 

Neural networks, GA, Fuzzy etc and methods based on 

lab research such as statistics and regression model 

analysis. Experiments were conducted to research on 

optimization of machining process under dry conditions 

in order to predict surface roughness on two steel blocks. 

Experimental data was used to create fuzzy rules and 

their processing via neural networks. So that, first the 

prediction model is created with some experimental data 

and then the results of this model are compared with the 

real surface roughness. The combination of adaptive 

neural fuzzy intelligent system is used to predict the 

roughness of dried surface machined in turning process. 

Recent works extended in predicting surface 

roughness based on not only on cutting parameters (such 

as feed rate, spindle speed, and depth of cut), but also 

vibration signals detected by an accelerometer sensor 

[5,6] and also extended on to the surface roughness 

prediction on composite materials machining [7-10].  

Julie Z. Zhang et. Al [5] developed an 

in-process surface roughness adaptive control (ISRAC) 

system in turning operations using Artificial neural 

network (ANN) employing two subsystems: the neural 

network-based, in-process surface roughness prediction 

(INNSRP) subsystem and the neural network-based, 

in-process adaptive parameter control (INNAPC) 

subsystem and predicted surface roughness during the 

finish cutting process with an accuracy of 92.42%.  

Abouelatta, O.B. and Mádl, J. [6] focused on the study of 

finding correlation between surface roughness and 

cutting vibrations in turning and derived mathematical 

models for the predicted roughness parameters 

based both on cutting parameters and machine tool 

vibrations.  

Rajesh Kumar Bhushan et. Al [7] attempted to 

investigate the influence of cutting speed, depth of cut, 

and feed rate on surface roughness during machining of 

7075 Al alloy and 10 wt.% SiC particulate metal-matrix 

Composites using tungsten carbide and polycrystalline 

diamond (PCD) inserts on a CNC Turning Machine and 

found machining with tungsten carbide tool, lower in the 

feed range of 0.1 to 0.3 mm/rev and depth of cut (DOC) 

range of 0.5 to 1.5 mm as compared to surface roughness 

at other process parameters to be considered and above 

cutting speed of 220 m/min surface roughness of SiC 

composite during machining by PCD tool was less as 

compared to surface roughness at other values of cutting 

speed considered. V. Anandakrishnan & A. Mahamani 

[8] investigated on the machinability parameters such as 

cutting speed, feed rate, and depth of cut on flank wear, 

cutting force and surface roughness were analyzed 

during turning operations of a in situ Al-6061–TiB2 

metal matrix composite (MMC) prepared by 

flux-assisted synthesis basing on the composites 

characterization using scanning electron microscopy, 

X-ray diffraction, and micro-hardness analysis. Li Zhou 

et. Al [9] investigated a two-dimensional orthogonal 

cutting experiments and simulation analysis on the 

machining of SiCp/Al composites with a polycrystalline 

diamond tool. Using two kinds of finite element models, 

the cutting force and Von-Mises equivalent stress at 

different cutting conditions were studied in detail.  

A. Manna. B. Bhattacharyya [10] investigated 

influence of cutting conditions on surface finish during 

turning of Al/SiC-MMC with a fixed rhombic tooling 

system using Taguchi method for optimizing the cutting 

parameters for effective turning. Taking significant 

cutting parameters into consideration and using multiple 

linear regression mathematical models relating to surface 

roughness height Ra and Rt were established. 

The measurement of surface roughness of the 

workpiece by comparing with the maximum flank wears 

of the tool using machine visions systems, cutting 

parameters and vibrations using vibrometer has also been 

attempted for online prediction of surface roughness, as 

recent trends prefers automation of operations [11-14].  

Researchers like H. H. Shahabi & M. M. Ratnam [11,12] 

studied the effect of nose radius wear using the 2-D 

profile using a toolmaker’s microscope on the roughness 

profile and dimensional changes of workpiece of turned 

parts in a lathe operation using the machine vision (CCD 

camera) method. B. Srinivasa Prasad et. Al [13] 

developed a methodology for extracting the relevant 

information the cutting process, tool wear monitoring, 

vibrations and effect on the machined surface topography. 

Vibrational data acquisition and signal processing were 

grabbed using acousto-optic emission sensor (i.e., laser 

Doppler vibrometer) and the surface topography analysis 

of machined surfaces during the progression of the tool 

wear was done with vision-based surface textural 

analysis. Fatih Basciftci and Huseyin Seker [14] 

generated on-line prediction of tool wears using artificial 

neural networks and fuzzy logic, considering cutting 

parameters as combination of different cutting speeds 

and feeds with constant depth of cut.  

Development of Regression models based on 

experimental tests of turning/machining operations are 

widely in exercise for predicting the behaviour and 

effects of machining parameters on surface roughness of 

the components or to aid the selection of working 

parameters given a required surface roughness [15-18]. 

C. X. (Jack) Feng et. Al [15] developed an empirical 

model for the prediction of surface roughness in finish 

turning basing on work piece hardness (material), cutting 

parameters, tool geometry and cutting time by means of 

nonlinear regression with logarithmic data 

transformation and their applications in determining the 

optimum machining conditions. Sahin, Yusuf and 

Motorcu, Riza A. [16] studied the development of 

surface roughness model when turning the mild steel 

hardened with mixed alumina ceramic (KY1615) and 

coated alumina ceramic cutting tools (KY4400). The 

model was developed in terms of main cutting 

parameters such as cutting speed, feed rate and depth of 

cut, using response surface methodology. A.M.A. 

Al-Ahmari [17] developed empirical models for tool life, 

surface roughness and cutting force in turning operations 
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basing on the process parameters (cutting speed, feed 

rate, depth of cut and tool nose radius). Response surface 

methodology and neural networks were used on turning 

experiments done on austenitic AISI 302 to generate, 

compare and evaluate the proposed models of tool life, 

cutting force and surface roughness. K. Kadirgama et. 

al[18] investigated the surface roughness prediction of 

6061-T6 Aluminium alloy in milling operation with 

carbide coated insert using statistical method and studied 

the influence of feed, speed, axial depth and radial depths 

as dependent variables. 

Researchers focused more, on combination of 

various cutting parameters using single-point cutting tool 

in turning operations and the regression model 

generation of surface roughness. However, the empirical 

model generations were limited to only one material 

study. Hence this paper focuses on study of combination 

of cutting parameters along with three different materials 

hardness into account on surface roughness prediction 

and model generation.  

3. EXPERIMENTAL DESIGN AND CONDITIONS 

3.1. Machining Tests  

In this work, turning operations were conducted on fully 

automated all geared headstock lathe machining center 

under dry condition, as shown in figure 1. Each turning 

operation were carried out with new carbide inserts for 

avoiding tool geometry wear impact, crater and chatter 

impact on disturbing the surface roughness finish in hard 

turning operations.   

 

Figure 1: Experimental setup of turning operation 

 

Three materials like Aluminium alloy, copper alloy and 

EN8 steel were chosen for studying the impact of 

increase in feeds versus decrease in cutting speeds with 

constant depth and were experimented to analyze the 

influence of these parameters along with the material 

hardness, on the generated surface roughness.  

Surface roughness tester as shown in figure 2 of 

Mitutoyo SURFTEST SJ-301, range of traverse 

0.25-0.5mm, Stylus (Diamond) differential induction 

method detection unit with detector retraction function in 

range of 21mm, V-Way bottom configuration, line 

voltage 100–240 V AC, power 12V, 3.5A, measuring in 

the range of -200 to 150microns, was used to measure the 

surface roughness on the turned surfaces. As the surface 

of turned components are cylinder in shape, surface 

roughness were measured on four diametrical points and 

the average of them was taken as surface roughness of 

that operation [2].   

The effect of machinability parameters such as 

cutting speed, feed rate and material hardness on surface 

roughness with constant depth of cut [2,14] were 

analyzed during turning operations and a regression 

model was developed. 

 

 

 

 

 

 

 

 

Figure 2: Experimental setup of measuring surface 

roughness using MITUTOYO SJ-301 surface roughness 

tester 

 

3.2 Cutting inserts 

Commercially available tungsten-based uncoated flat 

faced cemented carbide inserts (grade: WIDIA gray 

DCMT 11T312) were used. These inserts have 

geometries identical with the ones designated by ISO as 

DCMT 11T312 THM and ANSI as DCMT 3253 

(rhombus shape insert of length 11.63, with thickness of 

3.97 and 1.2mm nose radius).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Carbide Insert Geometry 

 

3.3 Workpiece material 

Hardness test is practical and provide a quick assessment 

and the result can be used as a good indicator for material 

selections. It also employed for quality assurance like 

wear, strength, fatigue etc. The nomenclature of hardness 

comes in various terms depending on the techniques used 

for hardness testing and also depends on the hardness 

levels of various types of materials. 

 In this work, Brinell hardness testing machine 

was used for measuring the hardness of all the materials 

on which cutting tests were performed like on EN8 steel 

(152-207HB) and found the hardness to be 170.4HB. 

This material was chosen for its well-known properties 

and for its relevance to the automotive and heavy 

equipment industries. Aluminium alloy having hardness 

of 69HB are widely used in engineering structures and 

components where light weight or corrosion resistance is 

required and Copper alloy having hardness of 85HB are 

widely used in deep draw and flat stamped products 

because of their excellent electrical and thermal 

performance, good resistance to corrosion, high ductility 

and relatively low cost, non-magnetic, non-sparking and 

non-bacterial and is slow to corrode.  

  The three workpiece materials used as test 

pieces were in the form of solid cylindrical bars.  

2 2

2P
BHN

D D D d


  
 

                                           (1) 
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Where BHN is the Brinell hardness value, P is applied 

load (kg-f), D is diameter of the indent ball (mm), d is the 

diameter of the indentation (mm). 

Using the Eq: (1) and 

2 210 & 30P Pmm mm
D D

   for Aluminium alloy, 

Copper alloy and EN8 steel respectively with indent ball 

diameters of 5mm and 2.5mm respectively, the hardness 

values of the materials were determined.  

The test piece taken are of 12cm each and as the 

machining done on them is hard turning, the temperature 

raised does not influence on the change in material 

hardness and so the hardness of the materials taken 

remains same through out the experiments.    

 

4. EXPERIMENTAL DATA AND 

REGRESSION MODEL 
This work postulates the model for the surface roughness 

prediction in the turning operations, in terms of the 

independent variable investigated based on lab research 

such as regression model analysis and using Taylor tool 

life equation in metal cutting [2,3,4,10,14], the variables 

can be expressed as: 
a b d

aR Cf v H                                                                    (2) 

Where aR Average surface roughness (μm), v  is the 

cutting speed (m/min), f  is the feed (mm/min), and H  

is hardness of the material (BHN) under consideration. 

C , a , b  and d  are model parameters to be estimated 

from experimental results.  

 Converting the exponential form of surface 

roughness aR  to linear model with help of logarithmic 

transformation, we generate the model as  

log log *log *log *logaR C a f b v d H   
            (3) 

The proposed first order model developed from the 

above functional relationship using RSM method is as 

follows [2]: 

0 0 1 1 2 2 3 3Y x x x x      
                                                (4) 

Where Y  is the true response of surface roughness on a 

logarithmic scale 0x  = 1 (dummy variable), 1 2 3, ,x x x are 

logarithmic transformations of feed, speed and material 

hardness respectively, while 0 1 2 3, , ,     are the 

parameters to be estimated. Eq (4) can be expressed as: 

1 0 0 1 1 2 2 3 3Y y b x b x b x b x     
                                   (5)

 

Where 1Y  is the estimated response and y the measured 

surface roughness on a logarithmic scale, ε the 

experimental error and the b values are estimates of the β 

parameters. 

The second-order model can be extended from 

the first-order model’s equation as: 
2

2 0 0 1 1 2 2 3 3 11 1

2 2

22 2 33 3 12 1 2 13 1 3 23 2 3

Y y b x b x b x b x b x

b x b x b x x b x x b x x

      

   
          

   (6) 

Where 1Y  is the estimated response based on second 

order model. 

Table 1: Experimental test values of turning operations 

on Aluminium alloy having hardness of 69HB using 

Carbide insert and constant depth of cut of 1.5mm 

Test 

Piec

e 

Average 

Surface 

Roughn

ess  

(micron

s) 

feed 

(mm/rev

) 

Spindle 

Speed  

(rpm) 

Cutting 

speed 

(m/min) 

1 3.38 0.15 

1250 

184.475 

2 2.39 0.17 190.36 

3 2.96 0.19 184.475 

4 2.49 0.2 196.25 

5 4.08 0.2 

900 

132.82 

6 2.20 0.22 137.06 

7 4.59 0.24 137.06 

8 3.24 0.25 141.3 

9 8.95 0.25 

560 

82.65 

10 6.75 0.28 85.28 

11 7.14 0.3 87.92 

 

Table 2: Experimental test values of turning operations 

on EN8 steel alloy having hardness of 170.4HB using 

Carbide insert and constant depth of cut of 1.5mm 

Test 

Piec

e 

Average 

Surface 

Roughn

ess  

(micron

s) 

feed 

(mm/re

v) 

Spindle 

Speed 

(rpm) 

Cutting 

speed 

(m/min) 

1 3.50 0.15 

1250 

184.475 

2 3.28 0.17 190.36 

3 2.05 0.19 184.475 

4 2.53 0.2 196.25 

5 4.14 0.2 

900 

132.82 

6 3.53 0.22 137.06 

7 5.09 0.24 137.06 

8 2.71 0.25 141.3 

9 5.18 0.25 

560 

82.65 

10 5.90 0.28 85.28 

11 3.50 0.3 87.92 

 

Table 3: Experimental test values of turning operations 

on Copper alloy having hardness of 85HB using 

Carbide insert and constant depth of cut of 1.5mm 

Tes

t 

Pie

ce 

Average 

Surface 

Roughnes

s  

(microns) 

feed 

(mm/re

v) 

Spindle 

Speed 

(rpm) 

Cutting 

speed 

(m/min) 

1 3.92 0.15 

1250 

184.475 

2 2.80 0.17 190.36 

3 2.22 0.19 184.475 

4 1.92 0.2 196.25 

5 4.09 0.2 

900 

132.82 

6 3.57 0.22 137.06 

7 6.05 0.24 137.06 

8 3.30 0.25 141.3 

9 4.04 0.25 560 82.65 
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Each workpiece material of length ―L‖ were divided into 

11 parts using the combination of three speeds and four 

feeds in such a way that as the cutting speed increases, 

the feed decreases, as shown in tables 1,2 and 3 and are 

been cut using hydraulic power hacksaw machine. As the 

surface is cylindrical, surface roughness was measured 

on the four diametrical end points and average of them 

was considered as the surface roughness of the test 

material.  

In this paper, after conducting the first pass of 

the 11 cutting experiments for each material, the surface 

roughness readings are used to find the parameters 

appearing in the postulated first-order and second-order 

model (Equation 4 & 5). In order to calculate these 

parameters, the least square method was used with the 

commercially available data mining technique software 

packages like MINITAB software. The first-order and 

second order linear equation used to predict the 

regression constants and exponents and the regression 

equation of surface roughness generated as: 

12.942 14.02 0.0384 0.00445aR f v H     

with 
2 267.20% & ( ) 47.52%R R adj   

5. RESULTS 

In this paper, regression analysis generates comparable 

results with its competing data mining method. The 

established regression equation indicates that the feed 

affects the surface roughness the most, but other 

parameters like cutting speed and the hardness of 

materials had a slight effect on surface roughness values. 

Table 1,2 and 3 presents the experimental 

results, when machined with considering cutting 

parameters (like feed, speed with constant depth of cut) 

and material hardness as a measure of surface roughness. 

So, three parameters are involved in predicting the model. 

Graph 1a, 2a and 3a indicates that the surface roughness 

decreases gradually at high speed like at 1250rpm and 

Graph 1b, 2b and 3b depicts that the Aluminium alloy at 

low machining speeds generates high roughness on 

surface and can be reduced with low feeds and hence 

Aluminium alloy is suitable for high speeds. EN8 steels 

generate high surface finish at high speeds with high 

feeds. Whereas Copper alloy shows the surface 

roughness will be good at high speeds with high feeds 

and even at low speeds with high feeds, the surface 

roughness can be maintained same as that of average 

speeds with increase in feeds. 

Fitted curve approximates very close to the 

observed values and predicts the regression model with a 

good precision and it appears to be a better model with 

R-sq of 67.20%. Furthermore, the average surface 

roughness value of Ra is 4.38 um for Aluminium alloy, 

3.67 um for EN8 steel and 4.12 um for copper alloy using 

new carbide inserts each time, respectively. 

 

 

 

 

 

(a) 

 

(b) 

Graph 1: Surface Roughness Vs Feed and cutting speeds 

for Aluminium alloy 

 

 

(a) 

 

(b) 

Graph 2: Surface Roughness Vs Feed and cutting speeds 

for EN8 steel alloy 
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Graph 3: Surface Roughness Vs Feed and cutting speeds 

for Copper alloy 

 

The adequacy of using analysis of variance on regression 

model, shown in Table 4.  At a level of confidence of 

95%, the model was checked Surface Roughness 

Prediction Model of Machining Using Statistical Method 

for its adequacy. As shown in Table 4, P value shows no 

evidence of lack of fit (P>=0.1) and this implies that the 

model could fit and it is adequate. 

 

Table 4: Analysis of Variance 

Source 

Degree 

of  

Freedo

m 

Sum 

of 

Squar

es 

Mean 

Square

s 

F- 

rati

o 

P- 

Valu

e 

Regres

sion 
3 

40.79

6 
13.599 9.22 0.00 

Residu

al 

Error 

29 
42.79

4 
1.476   

Total 32 
83.59

0 
   

 

6. CONCLUSIONS 
The investigations of this study indicate that the 

cutting parameters like cutting speeds and feeds are the 

primary influencing factors, which affect the surface 

finish when machining with new tool inserts. The results 

indicate that feed is the dominant factor affecting the 

surface roughness, followed by cutting speed and 

hardness of the material. 

Empirical model for surface roughness 

developed in this paper based on metal cutting 

experiments with various speeds and feeds and material 

hardness by means of nonlinear regression data mining 

technique done in MINITAB. It can be used to estimate 

the values of surface roughness at certain turning 

parameters like speeds and feeds or to aid the selection of 

working parameters and material, when given a required 

surface roughness.  

With the regression equation generated, the best 

combination of design variables between feed, cutting 

speed and material hardness for achieving optimum 

surface roughness can be worked out.  
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