
Sheeba Praveen,Dr. Rizwan Beg,Dhruba Shankar Ray / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.3052-3056

3052 | P a g e

COMPLEXITY

ERROR -

PRONENE

SS

SIZE

Problem Solution

Design Code

QUALITY PRODUCTIVITY

PERFORMEN

CE

Management

Method

Competence

Environment

Module

Length

Tools

Reuse

Outsourcing

Language

Usability

Reliability Change Maintanibilty

Computer power Understandibility

Functionality

Software Performance Measurement Metrics and Recitation

Sheeba Praveen Dr. Rizwan Beg Dhruba Shankar Ray
 Dept. CSE,Integral University Dept.CSE & IT, Integral university Dept. of IT

 Lucknow ,U.P. Lucknow,U.P. Lucknow,U.P.

Abstract— measuring software attributes with the

purpose of improving software product quality and project

team productivity has become a primary priority for

almost every organization that realize on computer. This

paper examined the concept software complexity and its

effect on software project, concerning productivity and

quality of real time software system. And these attribute

will help us to increase the performance of system.

Software project are influenced by several external and

internal factors generally gathered in the term software

complexity. So this paper discussed different parts of

software complexity and their effects on software

productivity and quality. We related mainly algorithmic

and structural complexity to productivity and quality. Our

hypothesis that Full Function Point analysis (FFA) of

Function point Metrics was most suitable for size

measurement which effect productivity and McCabe

metric suite of Object Point Analysis (OPA) is most

suitable for error-proneness measurement which effect of

real time system.

Keywords— Reliability, structural complexity

,Productivity, algorithmic complexity, FPA, FFP, OPA,

McCabe’s number metric.

I. INTRODUCTION
Software complexity is the degree of difficulty in

analyzing, maintaining, testing, designing and modifying

software. It is divided into two main classes‟ complexity of

problem and complexity of solution. There are different types

of software complexity, computational complexity,

Algorithmic complexity, structural complexity, Cognitive

complexity

The effect of complexity was divided into two main parts:

• Error –proneness means a program that is more

complex than another is also more likely to contain more

errors, influences usability, reliability, and need of change of

the system.

• Size influences the maintainability, understandability,

and computational power needed for implementing the system.

Here we describe software complexity with a model

in Fig. 1 that was divided into two main tracks one of the

tracks bears upon error-proneness which in the end leads to

quality issues. The other track considered size and effort

which influences productivity. Our mission of this paper is

only to discuss software quality and productivity so according

to our software model we only discuss structural complexity

and algorithmic complexity.

Figure 1. Software Complexity model

II. PRODUCTIVITY

A. Algorthimic complixity

We measure algorithmic complexity and how it

influences software size and different functional metrics that

measures productivity of software project.

A measure of productive efficiency calculated as the ratio of

what is produced to what is required to produce it[1].

Productivity=Size (LOC)/Effort (p/m)

Some researchers (Fenton & Pfleeger, 1996;

Möller&Paulish, 1996; Jones, 1996) have proposed that

function-points-based measure reflects more accurately the

value of output. It can be used to assess the productivity of

software-development staff at any stage in the life cycle [2].

Productivity= Function points implemented (FPA) / Person

Months

B. Proposed Method of Productivity

Here we proposed that Full Functional point (FFP)

metric gives more accurate result than FPA in terms of

productivity.

Productivity=FFP/PM

Sheeba Praveen,Dr. Rizwan Beg,Dhruba Shankar Ray / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.3052-3056

3053 | P a g e

C. Different categories of size measurement

Size Metrics Critics

Plane Size

Metric (LOC)

Language Dependent and

using Reusable code.

Function Size

metric

Not be applicable for real

time system and other

scientific system.

IFPUG‟s

Function

point(FPA)

Due to lack of

complexities issues it is

not be applicable to real

time system and other

scientific environment.

SPR‟s Function

Point

Overall impact of

complexity on source

code size is not exact.

3D function

point

It is Still an experimental

approach so it is not

widely used.

Mark II Method The acceptance of this

method is limited due to

the lack of wide scale

usage.

Full Function

Point(FFP)

Not well suited to

measuring software that

has other software

(particularly in other

architectural layers) as its

primary users.

Feature Point

Analysis

Still considered as an

experimental method.

D. Why FFP is most suitable for Real time Software?

 Works for all types of software (scientific, business

apps, web portals, embedded systems, etc.)[4]

 Works for all types of projects (new development,

enhancements, maintenance, etc.)

 Language independent and technology independent

 Produces statistically significant results

 Can be applied early in the development life cycle

E. Field Test of PDC

We were focusing on the evaluation of the chosen

functional measures of software, Function Point Analysis

(FPA) and Full Function Points (FFP) to Real time software.

We applied both these methods to a project broadband/mobile

data system based on the Japanese standard for mobile data

communication (PDC). It lasted for about one year and

involved about 50 persons.

We divided the application into modules, each one of

these modules was logically coherent and related to the other

modules, which meant that they together formed a working

unit. In FPA and FFP terms we looked at each of these

modules as separate applications. A wide range of module

sizes was represented in this application. We wanted this

distribution of size, since comparisons between the modules

were then easier to make.

Our hypothesis before the tests began was that the

FFP would be more useful than FPA for real time system. If

we could falsify this hypothesis, then FPA would be better for

PDC.

E. The result

As mentioned we separated the project of study in

modules, to all twelve pieces. For reasons of simplicity we

will call them A, B, C, D, E, F, G, H, I, J, K and L. In the

Interwork Description (IWD) document module A, B, C and D

were treated as one unit. Thus, during the first phase of the

tests, we did not count A, B, C and D as separate modules,

since that was not possible. However, this does not mean that

the sum of FPA and FFP count for these modules in the

second round of the counting is comparable to the figure we

received after the first phase for A, B, C and D as a unit. This

is due to the fact that when applying FPA and FFP some parts

of these modules are counted several times, above all the

communication internally and externally with other modules.

The results that came out of testing the methods on

this project are summarized in Table 1. Some important

conclusions can be drawn when looking at this table. First of

all the modules H, I, J, and perhaps also modules A and K

could be regarded as I/O-heavy modules, i.e. modules with a

large degree of communication with other parts of the system,

but not so much algorithmic complexity. This can be

concluded by looking at the quota between the figures for FPA

and FFP. If this quota is relatively high the FPA method has a

greater impact, and thus it is probable that these modules

contains much input and output, processes that are counted

high with the FPA method. The modules B, C and D, on the

other hand, could be regarded as modules with many sub-

processes and complex algorithms, since the FFP method has a

greater impact relatively to FPA. Finally, the figures in the two

columns for the second round of counting are higher than in

the columns representing the first round.

This means that when we increase the level of detail,

regarding the documents and code analyzed, we usually find

more functionality to take into account. The exceptions are

modules H and I. The reason for this is that they are only

concerned with input and output, i.e. the functionality is

included in the IWD document.

Sheeba Praveen,Dr. Rizwan Beg,Dhruba Shankar Ray / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.3052-3056

3054 | P a g e

C

B F

D E

A

J
G K

I

L

H

In
cr

ea
si

ng
 s

of
tw

ar
e

S
iz

e
&

 C
om

pl
ex

ity

TABLE I. RESULTS OF COUNTING FPA AND FFP

F. validation of result

Our main concern was to validate the results we got

from our tests from an objective viewpoint. However, a fully

objective view of this specific project at PDC was hard to

acquire. The approach we chose was therefore to compare our

results with the jointed opinion of the system developers

involved in the project. When we had concluded our tests, we

asked three of the system developers involved in the project to

place the modules in order of precedence. We explained that

we wanted them to order the modules according to size and

complexity, since FPA and FFP combine these factors. The

results of our tests were not shown to them until their order of

precedence was done. Naturally their knowledge of the

modules varied. Some of the modules they had developed

themselves, others were examined by them, but there were

always one or a few modules that they had very little

knowledge of. Thus, we compiled the opinions from these

three persons. In this compilation, when a person had greater

knowledge of a module than the others, his opinion took

precedence over the others regarding this specific module.

However, the opinions were very similar, especially regarding

which modules that was the most and the least complex. The

order of precedence that became the result of the “opinion

compilation” can be seen in Fig. 2.

Figure 2. Module complexities according to the system

developers

The first thing to notice is that we can distinguish

three groups of modules. The most complex group (C, B, F, D,

E and A) consists of modules with many lines of code and

many algorithms. The middle group (J, G, K and L) is made

up of modules that contain a certain amount of input and

output, but also fragments with algorithms and complex

functionality. The last group (H and I) of modules are units

with a pure I/O- functionality.

If we compare our tests of the FPA and FFP methods on these

modules with the opinion of the system developers, we find

that they are rather congruent. The column in Table:1 that best

agrees with Figure:2 is without doubt, the counting of FFP on

IS‟s and source code (4th column). The order of precedence

there is C, B, A, E, D, F, G, J, L, K, H and I. The explanation

for the exceptions (A and G is counted higher with FFP than

according to the system developers, and F is counted lower)

can be found in the system developer‟s perception of the

problem. We suspect that they interpreted the order of

precedence only as a software complexity issue and

disregarded the size factor. If we look at A and G we also find

that they are made up of relatively many lines of code, and F is

rather complex but is also a low-volume module.

Thus, the outcome of this simple but rather

straightforward validation of our results speaks in favor of a

detailed counting with the FFP method. As we predicted, the

FPA method fails to take into account the complexity factors

that are inherent in real-time systems, such as the number of

algorithms and the number of sub-processes. Moreover, we

need a detailed and comprehensive documentation in order to

make accurate use of the FPA and FFP methods.

Finally, the proposed model is justifiable, this will

able to choose a measure of algorithmic complexity and a

functional size metric , field test were performed for real time

software using two main candidate : FPA and FFP. These test

showed that FFP is the best adapted method for real time

software. Thus,

Productivity=FFP/man time

III. QUALITY
A. Structural Complexity

According to our model productivity also reflect

quality so next we will measure the quality with the help of

structural measure of software complexity. A principal

objective of software engineering is to improve the quality of

software products .Quality attributes in measurable form

Structural Measures of Software Complexity; we considered a

range of internal attributes believed to influence quality in

some way. Many practitioners and researchers measure and

analyze internal attributes because they may be predictors of

external attributes. There are two major advantages to doing

so. First, the internal attributes are often available for

measurement early in the life cycle, whereas external

attributes are measurable only when the product is complete

(or nearly so). Second, internal attributes are often easier to

measure than external ones.

Quality=Defect/Function Point

Sheeba Praveen,Dr. Rizwan Beg,Dhruba Shankar Ray / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.3052-3056

3055 | P a g e

Defect density as a measure of reliability we can

consider the defects to be of two types, the known defects that

have been discovered through testing, inspection, and other

techniques, and the latent defects that may be present in the

system but of which we are as yet unaware (Olsson, 1996).

Then we can define the defect density as:

Defect Density = Number of known defects / Product

B. Proposed method of Quality

Size According to our hypothesis that if we measure

defect by using best error-prone metric then we can increase

the quality of software. And after theoretical and practical

studies we found that object point metric suit which is based

on object oriented analysis(OPA) is best error prone metric.

The three different quality metric suites are [10]

 Chidamber and Kemerer (CK) Metrics produces

statistical models that is effective in detecting error-

prone in classes.

 Robert C. Martin‟s Metric Suite is good in predicting

the faults in terms of the packages.

 McCabe‟s Metric Suite are good fault-proneness

predictors in methods

So The McCabe‟s Cyclometric Number of OPA is best

metric to measures errors in the code.

C. Different Categories of structure Metric

Structural Metrics Critics

McCabe‟s Cyclometric

Number

 It is only psychological

complexity not a

computational complexity.

Halstead‟s Measures Lack of Standard definition

so it is not applicable for

larger systems, error-

proneness has also been

made on small-scale

systems.

Henery and Kufra‟s

measures

 Not mathematical correct,

according measurement

theory, and revision of the

formula have been made -

proneness of a program.

Object point Analysis(OPA) this measure is only

compatible with object

oriented approach

D. Why Object point metric is is most suitable for quality

measurement of real time system Real time system?

 OPA founds three types of Fault mainly Object

Oriented Faults, Object Management Faults, and

Traditional Faults.

 OPA helpful to group OO metrics into System size,

Class or method size, Coupling and inheritance, Class

or method internals.

 OPA has a metric suite which will help to measure the

different level of complexity and give different

efficiency in fault prediction.

 The metrics concentrate on the internal object

structure of each individual entity that exposes internal

complexity and on the interactions among entities that

exposes external complexity.

 Computational complexity surrounding the efficiency

of an algorithm, utilization of machine resources in

addition to intellectual complexity issues that affect

the capability of a programmer to create, alter, and

understand software and the capability of end user to

successfully utilize the software are measured by

metrics [3].

 Most reliable testing and yet minimize redundant

testing effort.

 if classes are expected to be the most fault-prone then

defect detection activities will help to remove these

fault before the software is released. So it predicted

from Fault early in the life cycle of software

development.

 We can also predict the labor required to build the

software. So OPA metric will increase the

performance by implemented with less effort and

lower cost.

IV. PERFORMENCE

The last section of the paper is devoted to a combined

measure of project performance, where the two dimensions of

project productivity and software quality is connected to get

an overall picture of the project (fig:3) and what it has

produced. The measure builds on a technique called Data

Envelopment Analysis (DEA), and can be expressed both

graphically and in an equation.

Figure 3. Graphical presentation of the performance measure

Sheeba Praveen,Dr. Rizwan Beg,Dhruba Shankar Ray / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.3052-3056

3056 | P a g e

 Performance of project α = x1 / (x1 + x2)

V. CONCLUSION
The goal of this proposal is to improved performance by

choosing the best Productivity and Quality metrics so we have

proposed that FFP and McCabe‟s Cyclometric Number will

improve the performance of real time system

References
[1] Abran, A., Desharnais, J.-M., Maya, M., St-Pierre, D., &

Bourque, P. (1998). Design of Functional Size

Measurement for Real-Time Software. Montréal,

Université du Québec à Montréal [www document]..

URL http://www.lrgl.uqam.ca/publications/pdf/407.pdf

[2] Bohem, R. (1997). Function Point FAQ. Metuchen,USA,

Software Composition Technologies, Inc URL

http://ourworld.compuserve.com/homepage/softcom/

[3] Desharnais, J.-M. & Morris, P. (1996). Validation Process

in Software Engineering: an Example with Function

Points. In Forum on Software Engineering Standards

(SES„96), Montreal [www document]..

URL http://www.lrgl.uqam.ca/publications/pdf/104.pdf

[4] Introduction to Function Point Analysis (1998). GIFPA,

Issue 2, summer [www document]. URL

http://www.gifpa.co.uk/news/News2Web.pdf

[5] International Standards Organisation (ISO) (1991).

Information Technology ± Software Product Evaluation ±

Quality Characteristics and Guidelines for their Use

(ISO/IEC IS 9126). Geneve: ISO/IEC.

[6] Software Metrics - why bother?.(1998). GIFPA, Issue 1,

spring

URL http://www.gifpa.co.uk/news/Issue1_ed2.pdf

[7] St-Pierre, D., Maya, M., Abran, A., Desharnais, J.-M. &

Oligny, S. (1997a). Full Function Points: Counting

Practices Manual. Montréal, Université du Québec à

Montréal [www document].

URL http://www.lrgl.uqam.ca/publications/pdf/267.pdf

[8] St-Pierre, D., Maya, M., Abran, A., Desharnais, J.-M. &

Oligny, S. (1997b). Measuring the functional size of real-

time software. Montréal, Université du Québec à

Montréal [www document].

URL http://www.lrgl.uqam.ca/publications/pdf/330.pdf

[9] Fenton, N. E. & Pfleeger, S. L. (1996). Software Metrics -

A Rigorous & Practical Approach. London:

International Thomson Computer Press.

[10] Functional Size Measurement for Real-Time Software.

Montréal, Université du Québec à J. Clerk Maxwell, A

Treatise on Electricity and Magnetism, 3rd ed., vol.

2. Oxford: Clarendon, 1892, pp.68–73.

[11] An Empirical Validation of Software Quality Metric

Suites on Open Source Software for Fault-Proneness

Prediction in Object Oriented System I. S. Jacobs and C.

P. Bean, “Fine particles, thin films and exchange

anisotropy,” in Magnetism, vol. III, G. T. Rado and H.

Suhl, Eds. New York: Academic, 1963, pp. 271–350.

http://www.lrgl.uqam.ca/publications/pdf/407.pdf
http://ourworld.compuserve.com/homepage/softcom/
http://www.lrgl.uqam.ca/publications/pdf/104.pdf
http://www.gifpa.co.uk/news/News2Web.pdf
http://www.gifpa.co.uk/news/Issue1_ed2.pdf
http://www.lrgl.uqam.ca/publications/pdf/267.pdf
http://www.lrgl.uqam.ca/publications/pdf/330.pdf

