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ABSTRACT-Mean communication range is one 

of important parameter of wireless Ad-Hoc 

networks which will judge the performance of 

wireless communication system. In order to make 

100 percent efficient communication system, we 

must need to analyze the impact of fading medium 

on mean communication range. In present project 

work we are analyzing the impact of Nakagami-m 

fading medium as well as we are investing the effect 

of superimposed lognormal shadowing. We also 

present the simulation result with the help of 

MATLAB simulation tool. Complete numerical 

and simulated result will help to design more 

practical wireless Ad-Hoc network. 

 

KEYWORDS: Ad-Hoc network, mean 

communication range, Rayleigh fading, Nakagami-
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1. INTRODUCTION 
The growing interest in the field of self-organizing 

wireless networks, often referred to as ad hoc, has led 

to a considerable amount of literature dealing with the 

characterization of the limiting performance of such 

networks, in terms of both connectivity [1–4] and 

capacity [5–10], two  

intimately related issues [11]. Further, the results of 

one-dimensional case may be used to obtain bounds 

on the connectivity of networks in higher dimensions, 

although the resulting bounds are known not to be 

tight [2, 12]. In the literature, results for the 

connectivity of one dimensional network are presented 

in [2, 3, 12, 13]. . In this work, we show how we can 

enhance the model, in order to account for the 

presence of shadowing and/or fading phenomena on 

the network connectivity. Note that, in a two-

dimensional framework, some results on the impact of 

channel randomness are known [14–16]. On the other 

hand, to the best of authors knowledge, no in-depth 

analysis of connectivity with node placement  

 

 

distributions other than uniform or Poisson has been 

presented so far. Further, note that, according to the 

results in [2, 17], we expect our analysis to hold with a 

good degree of approximation also for the case of 

mobile ad-hoc networks in the presence of a random 

waypoint mobility model. When we account for 

random channels, the notion of connectivity fades, due 

to the different propagation conditions that may be 

encountered in the forward and backward directions. 

In this case, we focus on the problem of broadcast 

percolation, where propagation of one message in the 

forward direction is studied. In this case, closed-form 

results may be obtained for the case of nodes 

distributed accorded to a Poisson point process. We 

focus on this distribution in order to keep the tractation 

simple and to gain insight into the impact of channel 

randomness on the connectivity properties of the 

resulting network.  

By extensive literature survey we can make the 

conclusion that the reference paper [22] has done the 

analysis of the mean communication range for 

Rayleigh fading as well as lognormal superimposed 

Rayleigh fading but there is a lack of analysis of mean 

communication range for Nakagami-m fading which is 

more practical fading scenario than present one. In the 

present project work effect of Nakagami-m fading and 

superimposed lognormal shadowing on mean 

communication range is analyzed and discussed.  

The remainder of the paper is organized as 

follows. In Section 2, the preliminary assumptions and 

model are provided. Analytical evaluation of mean 

communication range is presented in Section 3. 

Section 4 describes the numerical and simulation 

results. The paper is concluded in Section 5. 

 

2. SYSTEM MODEL 
The notion of “communication range”, which had an 

immediate physical interpretation in the case of a 

deterministic channel model, becomes in this 

framework only a random variable whose distribution 
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characterizes the capacity of any node to percolate a 

broadcast message. In fading channels, the impact of 

the randomness due the Gaussian noise is usually 

negligible compared to the variation in SNR due to the 

fading process. We assume that the fading is constant 

over the transmission of a frame and subsequent 

fadings are iid (block-fading channel).  

The probability that the message is correctly received 

at a distance d is given by [22]: 

                                                    

( ) ( )p f a da



 


      (1)                                        

 

Transmission range can be given by  

                                         

( ) ( ) 1 ( )RF a p R a p R a             (2)                                             
 

Mean communication range can be computed as given 

by, 

                                               

0
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3. ANALYSIS OF MEAN 

COMMUNICATION RANGE 
 

3.1.  Analysis of Mean Communication Range of 

Nakagami-m Fading Channel 

 

The pdf of SNR equation for Nakagami fading is 

given by [23]   

     𝑃𝑠 𝛾  =    
𝑚

𝛾 
 
𝑚 𝛾𝑚−1

𝛤 𝑚 
   𝑒

−
𝑚𝛾

𝛾  (4)                                                                                                                                                

Where,  

           𝛾 =Average SNR 

          𝛾=Instantaneous SNR 

Success probability i.e probability (𝛾 ≥ 𝛹) is given 

by, 
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Hence, 
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Where, 

            𝛾 =
𝑃𝑟

𝑃𝑛𝑜𝑖𝑠𝑒
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From equation (8) and (9) we can get                                              
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With the help of the above equation, (3) and (10) we 

can find E[R],  

     𝐸 𝑅 =   1 − 𝐹𝑅 𝑎  
∞

0
𝑑𝑎   (11) 

Where, 
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From equation (11) and (12)  we can get E[R]  as ,                                                       
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  In order to solve above equation we have from [table]                              
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From equation (13) and (14) we can get E[R], 
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3.2. Analysis of Mean Communication Range of 

Superimposed Lognormal Nakagami-m Fading 

Channel 

 

From equation (10) we have                                          
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Hence we can find the mean communication range 

from [22], as 
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After solving the above equation we will get 
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4. NUMERICAL AND SIMULATION 

RESULT 
The numerical and simulation results are obtained 

from the analytical model using MATLAB. The 

system parameters are selected as follows: K=10dB, 

txP =1mWatt, W=0.01mWatt,  =10dB. The 

parameters such as m, , , and   are selected 

suitably. We choose a random number of nodes 

according to Poisson process and the nodes are placed 

over the simulation area according to a random 

uniform distribution.  

 

Fig1: attenuation constant versus mean 

communication range at m=2, 4 and 6 

 

Fig2:  fading factor m versus mean communication 

range at alpha =2, 4 and 6 

  

 

Fig3: mean communication range v/s transmitted 

power at attenuation constant  

α= 2, 4 and 6. 
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Fig4: mean communication range v/s SD at fading 

factor m =2 and 6 

 
Fig5: mean communication range v/s attenuation 

constant at SD =1 and 2 

 
Fig.6: mean communication range v/s attenuation 

constant at sigma =0 and 2 

 

5. CONCLUSION  
The concern paper work is doing an extensive 

investigation of mean communication range for 

Nakagami-m fading as well as superimposed 

Nakagami lognormal shadowing channel which is 

more practical result than present one. we have 

presented the analytical as well as simulation results 

which will give clear insight for a practical design 

wireless sensor network. 

The present paper can be extended to 

diversity scheme, to overcome the fading effect and 

we can analyze the improvement over mean 

communication range with respect to several diversity 

scenario. The concern project work can be extended to 

MIMO scheme as well as co-operative MIMI schemes. 
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