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Abstract:  In this paper, the Field Programmable Gate Array (FPGA) based 64-bit RISC processor with built-in-

self test (BIST) feature implemented using VHDL and was, in turn, verified on Xilinx ISE simulator. The VHDL 

code supports FPGA, System-On-Chip (SOC), and Spartan 3E kit. This paper also presents the architecture, data 

path and instruction set (IS) of the RISC processor. The 64-bit processors, on the other hand, can address enormous 

amounts of memory up to 16 Exabyte‟s. The proposed design can find its applications in high configured robotic 

work-stations such as, portable pong gaming kits, smart phones, ATMs.  
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1 Introduction 
In today‟s technology, RISC Processors are 

playing a prominent and the RISC with BIST feature 

is one of the more dominant test pattern which can 

provides, in system testing of the Circuit-Under-Test 

(CUT). BIST design is becoming more complicated 

with the increase of IC size. 

Though the RISC has less instruction set, as its 

the bit processing size increases then the test pattern 

becomes complicated and the structural faults are 

maintained high. And BIST is highly reliable, low 

cost. BIST is beneficial in many ways: First, it can 

reduce dependency on external Automatic Test 

Equipment (ATE). In addition, BIST can provide at 

speed, in system testing of the Circuit-Under-Test 

(CUT). 

This is crucial to the quality component of testing. 

Also, BIST can overcome pin limitations due to 

packaging, make efficient use of available extra chip 

area, and provide more detailed information about the 

faults present. In our thesis, a 64 bit RISC processor 

with limited functionality is designed with an 

architecture that supports BIST. 

The proposed design is done by implementing 

MICA (Minimal Instruction Set Computer 

Architecture) architecture. The design is implemented 

on Xilinx ISE 10.1i Simulator and programmed by 

using VHDL. The programmed code is supports 

FPGA Spartan-3E Kit. However, contemporary CAD 

tools allow the designer of hardwired control units 

almost as easy as micro programmed ones. This 

enables the single cycle rule to be enforced, while 

reducing transistor count. 

In order to facilitate the implementation of most 

instruction as register-to-register operations, ALU is 

analyzed and an exhaustive set of test patterns is 

developed. 

 

2 Architectural Design - Implementation 
In this session, Architecture, Data path, and the 

instruction set are described. The FPGA based RISC 

Processor has its architecture with BIST, control and 

timing module is a Hardware module. The ALU is 

divided into two parts as: The Operational 

Architecture (OA) and the Testing Architecture (TA). 

 Operational Architecture (OA) does the actual 

operation of the ALU. It has five units, 4-bit Carry 

Look Ahead adder (CLA), and a 4-bit AND, OR, 

XOR and INVERTER gates. There is a PreCLA to 

prepare the inputs based on the arithmetic operation 

to be done. There is a MUX which uses the select 

pins to select one of the results from the above five 

units. 

Testing Architecture (TA), which comes into play 

only during testing, has a ROM which has the 

discovered test patterns stored in. There is an address 

decoder to select which of the test patterns will be 

applied. There is a TestMUX, which depending on 

the value on the TestMode pin will present the test 

pattern or the actual inputs to be operated upon, to the 

Operation Architecture. 
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Figure 2.1: 64-bit RISC Processor Architecture. 

Table 2.1: 33 Instruction Set (IS) for 64 bit RISC 

Processor 

INSTRUCTIONS DESCRIPTION 

ADD – 

Arithmetic 

Addition 

 

ADD  dest. Src: Adds “src‟‟ to 

“dest” and replacing the original 

contents of “destination”. Both 

operands are binary. 

IAND – Logical 

AND 

 

ADD  dest. Src: Performs a 

logical AND of the two operands 

replacing the destination with 

result. 

SKIPZ – Skip on 

Zero 

 

Skipz, Skips one clock cycle 

when data entered is zero. 

LTR – Load 

Task Register  

(286+ privileged) 

LTR  src; Loads the currnt task 

register  with the value specified 

in “src”. 

 

LSL – Load 

segment  Limit 

(286+ protected) 

LSL dest. Src: Loads the 

segment limit of a selector into 

the destination register if the 

selector is valid and visible at 

the current privilege level. If 

loading is successful the Zero 

Flag is set, otherwise it is 

cleared. 

INOT – one‟s 

complement 

negation (Logical 

NOT) 

NOT dest; Inverts the bits of the 

“ dest” operand formatting the 1 

s complement. 

NEG – Two‟s 

complement 

negation 

NEG dest; Subtracts the 

destination from 0and saves the 

2scomplement of “dest” back 

into “dest”. 

POP – 

Pop Word off 

Stack 

POP dest; Transfers word at the 

current stack top (SS:SP)to the 

destination then increments SP 

by two  point to the new stack 

top. CS is not a valid destination. 

PUSH – 

Push Word onto 

Stack 

PUSH src 

PUSH immed (80188+only): 

Decrements SP by the size of the 

operand (two or four, byte 

values are sign extended) and 

transfers one word from source 

to the top (SS: SP). 

SETS – 

Set if 

Signed(368+) 

SETS dest; Sets the byte in the 

operand to1 if the Sign Flag is 

set, otherwise 

Sets the operand to 0. 

ROL –  Rotate 

Left 

 

ROL dest, count ;Rotates the 

bits in the destination to the left 

count” times with all data 

pushed out the left side re-

entering on the right. The Carry 

Flag will contain the value of the 

last bit rotated out. 

ROR –  Rotate 

Right 

 

ROR dest, count; Rotates the 

bits in the destination to the right 

“count” 

Times with all data pushed out 

the right side re-entering on the 

left. The Carry Flag will contain 

the values of the last bit rotatd 

out. 

SAL / SHL –  

Shift Arthemetic 

Left / Shift 

SAL dest, count 

SHL dest, count; Shifts the 

destination left by “count”bits 
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Logical 

 

with zeroes 

Shifted in on right. The carry 

Flag contains the last bit shifted 

out. 

SAR – Shift 

Arthemetic Right 

 

SAR dest, count; the destination 

right by “count” bits with the 

current sign bits replicated in the 

leftmost bit. The carry Flag 

contains the last bit shifted out. 

SETC –  Set if 

Carry (386+) 

 

SETC  dest; Sets the byte in the 

operand to 1 if the carry flag is 

set, 

Otherwise sets the operand to 0. 

SETO –  Set if 

Overflow 

 

SETO dest; Sets the byte in the 

operand to 1 if the overflow flag 

is set, 

Otherwise sets the operand to 0. 

STC –  Set Carry STC; Sets the Carry Flag to 1. 

ST1 – 

Set Interrupt Flag 

(Enable Interrupt) 

 

ST1; Sets the Interrupt Flag to 1, 

which enables recognition of all 

hardware, interrupts. If an 

interrupt is generated by a 

hardware device, an END of 

interrupt (EOI) must also be 

issued to enable other hardware 

interrupts of the same or lower 

priority. 

SUB – 

Subtract 

 

SUB dest,src; The source is 

subtracted from the destination 

and the result is stored in the 

destination. 

VERR – 

Verify Read 

(286+protected) 

 

VERR src; Verifies the 

specified segment selector is 

valid and is readable at the 

current privilege level. If the 

segment is readable, the Zero 

Flag is set, otherwise it is 

cleared. 

CLC  – 

Clear Carry 

 

CLC; Clears the Carry Flag. 

IXOR – 

Exclusive OR 

 

XOR dest, src; Performs a 

bitwise exclusive OR of the 

operands and returns the results 

in the destination. 

INAND – 

Logical NAND 

 

Inand dest, src; Performs a 

bitwise logical NAND of the two 

operands replacing the 

destination with the result. 

ADDI – 

Add Immediate 

ADD dest, src; Adds “ src”  to 

“dest” and replacing the original 

contents of “dest” Both operands 

are binary. It performs 

immediate addition i.e., takes 

half clock cycle than in add 

Operation. 

HLT – 

Halt CPU 

HLT; Halts CPU until RESET 

line is activated, NMI or 

maskable interrupt received. The 

CPU becomes domant but 

retains the CS: IP for later 

restart. 

SKIPN – 

Skip on Neg. 

Skipn; Skipsone clock cycle 

when NEG instruction is 

executed. 

VERW – 

Verify Write 

(286+protected) 

VERW Src; Verifies the 

specified segments selector is 

valid and is rata bleat the current 

privilege level. If the segment is 

writable, the Zero Flag is set, 

otherwise it is cleared. 

CLR – 

Clear 

Clr; It clears every flag used in 

processor. 

LD – Loads Data 

from Adress 

Id dest; Transfer data at the 

current address to the destination 

then increments address to the 

point of new address. 

ST – Stores Data 

to Adress 

St src; Tranfers data from 

destination to the given address. 

ISLL – 

Shift Logical Left 

SAL dest, count 

SHL dest, count; Shifts the 

destination left by “count” bits 

with zeroes shifted in on right. 

The Carry Flag contains the last 

bit shifted out. 

JAL – Jump and 

Link 

dest, src; Jumps the pointer from 

source to destination . Mainly 

used in selection of the desired 

register at the moment. 

BR –  Branch Br dest; Responsible for 

disabling the write enable for 

registers. 

The architecture and data path for the proposed 

design are shown Fig. 2.1 and 2.2, respectively. Table 

2.2 gives the salient technical features of the 

proposed processor. Table 2.1 provides detailed 

description of entire 33 instruction set. 

       Table 2.2:    Salient Technical Features of RISC 

processor 

Features of  RISC processor 

Architecture MICA 

Instructions 33bit 

Instruction Register 32 bit 

Address Counter 32 bit 

Data memory 64 bit 

Data bus 64 bit 

Address  bus 32 bit 
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Figure 2.2: Data paths of 64 – RISC Processor. 

3 Synthesis Report 

 
Figure 3.1: Synthesis report. 

 
Figure 3.2: Routing Of RISC Processor 

 
Figure 3.3: Floor Planning for RISC Processor 

4 Simulation Results 

 
Figure 4.1: Simulation of top module with central 

processing unit inputs 

Figure 4.2: Simulation results of general purpose 

register 
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Figure 4.3: Simulation results for the ALU outputs.

 

Figure 4.4: Simulation results of 33 instructions and 

memory module 

The above results show the simulation of 64 bit 

RISC Processor. It has clock and reset signal are the 

input for the top module shows in 4.1.1. It consists of 

a 16 general purpose register of 64 bit size which is 

shown in 4.1.2. And the operation of arithmetic logic 

unit with program counter is shown in 4.1.3. The 

instruction set having 33 instructions and the memory 

module shown in figure 4.1.4 and the total processor 

result is obtained by combining all the results which 

is verified using Xilinx ISE simulator. 

5 Applications 
 The proposed design can find its applications in 

automation, high configured robotic work-stations 

such as, portable pong gaming kits, smart phones, 

Vender Machines, ATMs, bottling plant, etc.  

Bottles start filling from the right side and boxes 

start to move from the left side. Here four tracks of 

bottles are used simultaneously therefore packing is 

made of four bottles. When bottle reaches to the fourth 

position, box moves to the first position. After that, 

bottle is dropped in the box and hence, box moves one 

position ahead. In this way, when box is at the fifth 

position, signal „lb‟ is set to „1‟ indicating to lift the 

box. 

5.1 Flow Chart for bottling Plant application: 

 
Figure 3: Flow chart for bottling plant 

 

5.2 Algorithm for bottling Plant application: 

 

 a=1, b=7, weight=0   

 

 loop a till a = 8  

    a = a+1;   wait for 15 secs 

 If  (a = 4)   then  

    drop bottle in box  

    a = a-1;  

 End If;  

 If  (a = 5)  then 

     report error in bottle machine  

   End If; 

 End loop;  

 loop b till b = 5  

   b = b+1; wait till weight = 1;  

   If  (b = 5)  then 

  given signal to left box;  

b = b-1;  

    End If; 

 If  (b = 6)  then  

     report error in packing machine 

       End if;  
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End loop; 

6 Conclusions 
The 64-bit RISC Processor with 33 instructions 

set and MICA (Minimal Instruction Set Computer 

Architecture) architecture has been designed and it 

can be implemented on FPGA. The design is verified 

on Xilinx ISE 10.1i simulator and programmed by 

using VHDL. The programmed code can be 

implemented on FPGA Spartan-3E Kit. ALU is 

analyzed and an exhaustive set of test patterns is 

developed. Future work will be added by increasing 

the number of instructions and make a pipelined 

design with less clock cycles per instruction and more 

improvement can be added in the future work. 
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