
Imran Mohammad, Ramananjaneyulu K / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2544-2549

2544 | P a g e

FPGA Implementation of a 64-Bit RISC Processor Using VHDL

Imran Mohammad
1
, Ramananjaneyulu K

2

1,2
QIS College of Engineering, Ongole-523001, A.P., INDIA.

Abstract: In this paper, the Field Programmable Gate Array (FPGA) based 64-bit RISC processor with built-in-

self test (BIST) feature implemented using VHDL and was, in turn, verified on Xilinx ISE simulator. The VHDL

code supports FPGA, System-On-Chip (SOC), and Spartan 3E kit. This paper also presents the architecture, data

path and instruction set (IS) of the RISC processor. The 64-bit processors, on the other hand, can address enormous

amounts of memory up to 16 Exabyte‟s. The proposed design can find its applications in high configured robotic

work-stations such as, portable pong gaming kits, smart phones, ATMs.

Keywords: FPGA, RISC, BIST, VHDL, SoC, IS, Exabyte.

1 Introduction
In today‟s technology, RISC Processors are

playing a prominent and the RISC with BIST feature

is one of the more dominant test pattern which can

provides, in system testing of the Circuit-Under-Test

(CUT). BIST design is becoming more complicated

with the increase of IC size.

Though the RISC has less instruction set, as its

the bit processing size increases then the test pattern

becomes complicated and the structural faults are

maintained high. And BIST is highly reliable, low

cost. BIST is beneficial in many ways: First, it can

reduce dependency on external Automatic Test

Equipment (ATE). In addition, BIST can provide at

speed, in system testing of the Circuit-Under-Test

(CUT).

This is crucial to the quality component of testing.

Also, BIST can overcome pin limitations due to

packaging, make efficient use of available extra chip

area, and provide more detailed information about the

faults present. In our thesis, a 64 bit RISC processor

with limited functionality is designed with an

architecture that supports BIST.

The proposed design is done by implementing

MICA (Minimal Instruction Set Computer

Architecture) architecture. The design is implemented

on Xilinx ISE 10.1i Simulator and programmed by

using VHDL. The programmed code is supports

FPGA Spartan-3E Kit. However, contemporary CAD

tools allow the designer of hardwired control units

almost as easy as micro programmed ones. This

enables the single cycle rule to be enforced, while

reducing transistor count.

In order to facilitate the implementation of most

instruction as register-to-register operations, ALU is

analyzed and an exhaustive set of test patterns is

developed.

2 Architectural Design - Implementation
In this session, Architecture, Data path, and the

instruction set are described. The FPGA based RISC

Processor has its architecture with BIST, control and

timing module is a Hardware module. The ALU is

divided into two parts as: The Operational

Architecture (OA) and the Testing Architecture (TA).

 Operational Architecture (OA) does the actual

operation of the ALU. It has five units, 4-bit Carry

Look Ahead adder (CLA), and a 4-bit AND, OR,

XOR and INVERTER gates. There is a PreCLA to

prepare the inputs based on the arithmetic operation

to be done. There is a MUX which uses the select

pins to select one of the results from the above five

units.

Testing Architecture (TA), which comes into play

only during testing, has a ROM which has the

discovered test patterns stored in. There is an address

decoder to select which of the test patterns will be

applied. There is a TestMUX, which depending on

the value on the TestMode pin will present the test

pattern or the actual inputs to be operated upon, to the

Operation Architecture.

Imran Mohammad, Ramananjaneyulu K / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2544-2549

2545 | P a g e

Figure 2.1: 64-bit RISC Processor Architecture.

Table 2.1: 33 Instruction Set (IS) for 64 bit RISC

Processor

INSTRUCTIONS DESCRIPTION

ADD –

Arithmetic

Addition

ADD dest. Src: Adds “src‟‟ to

“dest” and replacing the original

contents of “destination”. Both

operands are binary.

IAND – Logical

AND

ADD dest. Src: Performs a

logical AND of the two operands

replacing the destination with

result.

SKIPZ – Skip on

Zero

Skipz, Skips one clock cycle

when data entered is zero.

LTR – Load

Task Register

(286+ privileged)

LTR src; Loads the currnt task

register with the value specified

in “src”.

LSL – Load

segment Limit

(286+ protected)

LSL dest. Src: Loads the

segment limit of a selector into

the destination register if the

selector is valid and visible at

the current privilege level. If

loading is successful the Zero

Flag is set, otherwise it is

cleared.

INOT – one‟s

complement

negation (Logical

NOT)

NOT dest; Inverts the bits of the

“ dest” operand formatting the 1

s complement.

NEG – Two‟s

complement

negation

NEG dest; Subtracts the

destination from 0and saves the

2scomplement of “dest” back

into “dest”.

POP –

Pop Word off

Stack

POP dest; Transfers word at the

current stack top (SS:SP)to the

destination then increments SP

by two point to the new stack

top. CS is not a valid destination.

PUSH –

Push Word onto

Stack

PUSH src

PUSH immed (80188+only):

Decrements SP by the size of the

operand (two or four, byte

values are sign extended) and

transfers one word from source

to the top (SS: SP).

SETS –

Set if

Signed(368+)

SETS dest; Sets the byte in the

operand to1 if the Sign Flag is

set, otherwise

Sets the operand to 0.

ROL – Rotate

Left

ROL dest, count ;Rotates the

bits in the destination to the left

count” times with all data

pushed out the left side re-

entering on the right. The Carry

Flag will contain the value of the

last bit rotated out.

ROR – Rotate

Right

ROR dest, count; Rotates the

bits in the destination to the right

“count”

Times with all data pushed out

the right side re-entering on the

left. The Carry Flag will contain

the values of the last bit rotatd

out.

SAL / SHL –

Shift Arthemetic

Left / Shift

SAL dest, count

SHL dest, count; Shifts the

destination left by “count”bits

Imran Mohammad, Ramananjaneyulu K / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2544-2549

2546 | P a g e

Logical

with zeroes

Shifted in on right. The carry

Flag contains the last bit shifted

out.

SAR – Shift

Arthemetic Right

SAR dest, count; the destination

right by “count” bits with the

current sign bits replicated in the

leftmost bit. The carry Flag

contains the last bit shifted out.

SETC – Set if

Carry (386+)

SETC dest; Sets the byte in the

operand to 1 if the carry flag is

set,

Otherwise sets the operand to 0.

SETO – Set if

Overflow

SETO dest; Sets the byte in the

operand to 1 if the overflow flag

is set,

Otherwise sets the operand to 0.

STC – Set Carry STC; Sets the Carry Flag to 1.

ST1 –

Set Interrupt Flag

(Enable Interrupt)

ST1; Sets the Interrupt Flag to 1,

which enables recognition of all

hardware, interrupts. If an

interrupt is generated by a

hardware device, an END of

interrupt (EOI) must also be

issued to enable other hardware

interrupts of the same or lower

priority.

SUB –

Subtract

SUB dest,src; The source is

subtracted from the destination

and the result is stored in the

destination.

VERR –

Verify Read

(286+protected)

VERR src; Verifies the

specified segment selector is

valid and is readable at the

current privilege level. If the

segment is readable, the Zero

Flag is set, otherwise it is

cleared.

CLC –

Clear Carry

CLC; Clears the Carry Flag.

IXOR –

Exclusive OR

XOR dest, src; Performs a

bitwise exclusive OR of the

operands and returns the results

in the destination.

INAND –

Logical NAND

Inand dest, src; Performs a

bitwise logical NAND of the two

operands replacing the

destination with the result.

ADDI –

Add Immediate

ADD dest, src; Adds “ src” to

“dest” and replacing the original

contents of “dest” Both operands

are binary. It performs

immediate addition i.e., takes

half clock cycle than in add

Operation.

HLT –

Halt CPU

HLT; Halts CPU until RESET

line is activated, NMI or

maskable interrupt received. The

CPU becomes domant but

retains the CS: IP for later

restart.

SKIPN –

Skip on Neg.

Skipn; Skipsone clock cycle

when NEG instruction is

executed.

VERW –

Verify Write

(286+protected)

VERW Src; Verifies the

specified segments selector is

valid and is rata bleat the current

privilege level. If the segment is

writable, the Zero Flag is set,

otherwise it is cleared.

CLR –

Clear

Clr; It clears every flag used in

processor.

LD – Loads Data

from Adress

Id dest; Transfer data at the

current address to the destination

then increments address to the

point of new address.

ST – Stores Data

to Adress

St src; Tranfers data from

destination to the given address.

ISLL –

Shift Logical Left

SAL dest, count

SHL dest, count; Shifts the

destination left by “count” bits

with zeroes shifted in on right.

The Carry Flag contains the last

bit shifted out.

JAL – Jump and

Link

dest, src; Jumps the pointer from

source to destination . Mainly

used in selection of the desired

register at the moment.

BR – Branch Br dest; Responsible for

disabling the write enable for

registers.

The architecture and data path for the proposed

design are shown Fig. 2.1 and 2.2, respectively. Table

2.2 gives the salient technical features of the

proposed processor. Table 2.1 provides detailed

description of entire 33 instruction set.

 Table 2.2: Salient Technical Features of RISC

processor

Features of RISC processor

Architecture MICA

Instructions 33bit

Instruction Register 32 bit

Address Counter 32 bit

Data memory 64 bit

Data bus 64 bit

Address bus 32 bit

Imran Mohammad, Ramananjaneyulu K / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2544-2549

2547 | P a g e

Figure 2.2: Data paths of 64 – RISC Processor.

3 Synthesis Report

Figure 3.1: Synthesis report.

Figure 3.2: Routing Of RISC Processor

Figure 3.3: Floor Planning for RISC Processor

4 Simulation Results

Figure 4.1: Simulation of top module with central

processing unit inputs

Figure 4.2: Simulation results of general purpose

register

Imran Mohammad, Ramananjaneyulu K / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2544-2549

2548 | P a g e

Figure 4.3: Simulation results for the ALU outputs.

Figure 4.4: Simulation results of 33 instructions and

memory module

The above results show the simulation of 64 bit

RISC Processor. It has clock and reset signal are the

input for the top module shows in 4.1.1. It consists of

a 16 general purpose register of 64 bit size which is

shown in 4.1.2. And the operation of arithmetic logic

unit with program counter is shown in 4.1.3. The

instruction set having 33 instructions and the memory

module shown in figure 4.1.4 and the total processor

result is obtained by combining all the results which

is verified using Xilinx ISE simulator.

5 Applications
 The proposed design can find its applications in

automation, high configured robotic work-stations

such as, portable pong gaming kits, smart phones,

Vender Machines, ATMs, bottling plant, etc.

Bottles start filling from the right side and boxes

start to move from the left side. Here four tracks of

bottles are used simultaneously therefore packing is

made of four bottles. When bottle reaches to the fourth

position, box moves to the first position. After that,

bottle is dropped in the box and hence, box moves one

position ahead. In this way, when box is at the fifth

position, signal „lb‟ is set to „1‟ indicating to lift the

box.

5.1 Flow Chart for bottling Plant application:

Figure 3: Flow chart for bottling plant

5.2 Algorithm for bottling Plant application:

 a=1, b=7, weight=0

 loop a till a = 8

 a = a+1; wait for 15 secs

 If (a = 4) then

 drop bottle in box

 a = a-1;

 End If;

 If (a = 5) then

 report error in bottle machine

 End If;

 End loop;

 loop b till b = 5

 b = b+1; wait till weight = 1;

 If (b = 5) then

 given signal to left box;

b = b-1;

 End If;

 If (b = 6) then

 report error in packing machine

 End if;

Imran Mohammad, Ramananjaneyulu K / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2544-2549

2549 | P a g e

End loop;

6 Conclusions
The 64-bit RISC Processor with 33 instructions

set and MICA (Minimal Instruction Set Computer

Architecture) architecture has been designed and it

can be implemented on FPGA. The design is verified

on Xilinx ISE 10.1i simulator and programmed by

using VHDL. The programmed code can be

implemented on FPGA Spartan-3E Kit. ALU is

analyzed and an exhaustive set of test patterns is

developed. Future work will be added by increasing

the number of instructions and make a pipelined

design with less clock cycles per instruction and more

improvement can be added in the future work.

References

[1] Samuel O. Aletan,”An Overview of RISC

Architecture”, Proc. Symposium on Applied

Computing, 1992, pp.11-12.

[2] Design and Implementation of a 64-bit RISC

Processor using VHDL, 2009 IEEE.

[3] Design and Implementation of a 64-bit RISC

Processor using System On Chip (SOC), 2011,

IJCSCN, 360-370.

[4] Dal Poz, Marco Antonio Simon, Cobo, Jose

Edinson Aedo, Van Noije, Wilhelmus

Adrianus Maria, Zuffo, Marcelo Knorich,

“Simple Risc microprocessor Core designed

For digital set top box applications”,

Proceedings of the International Conference on

Application Specific Systems, Architectures

And Processors, 2000, p 3544.

[5] Brunelli Claudio, Cinelli Federico, Rossi

Davide, Nurmi Jari, “A VHDL model And

implementation of a coarse grain

reconfigurable coprocessor for a RISC core”,

2nd Conference on Ph.D. Research in

Microelectronics and Electronics Proceedings,

PRIME, 2006, p 229232.

[6] Rainer Ohlendorf, Thomas Wild, Michael

Meitinger, Holm Rauchfuss, Andreas

Herkersdorf, “Simulated and measured

performance evaluation of RISC based SoC

Platforms in network processing applications”,

Journal of Systems Architecture 53 (2007)

703–718.

[7] Luker, Jarrod D., Prasad, Vinod B., “RISC

system design in an FPGA”, MWSCAS 2001,

v2, 2001, p532536.

[8] Jiang, Hongtu, “FPGA implementation of

controller data path pair in custom Image

Processor design”, IEEE International

Symposium on Circuits and Systems

Proceedings,2004, p V141V144.

[9] Lou Dongjun, Yuan Jingkun, Li Daguang,

Jacobs Chris, “Datapath verification With

SystemC reference model”, ASICON 2005,

6th International Conference on ASIC, 2005,

Proceedings, v 2, p 906909.

[10] K. Vlachos, T. Orphanoudakis, Y.

Papaeftathiou, N. Nikolaou, D. Pnevmatikatos,

G. Konstantoulakis, J.A. Sanchez P., “Design

and performance evaluation of a

Programmable Packet Processing Engine

(PPE) suitable for high speed network

Processors units”, Microprocessors and

Microsystems 31, 2007, p 188–199.

[11] John L. Hennessy, and David A. Patterson,

“Computer Architecture A Quantitative

Approach”, 4th Edition; 2006.

[12] Vincent P. Heuring, and Harry F. Jordan,

“Computer Systems Design and Architecture”,

2nd Edition, 2003.

[13] Wayne Wolf, FPGA Based System Design,

Prentice Hall, 2005.

