
Ashwini Mujumdar, Gayatri Masiwal, P. M. Chawan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2015-2021

2015 | P a g e

Analysis of various Software Process Models

Ashwini Mujumdar*, Gayatri Masiwal**, P. M. Chawan***
*(Department of Computer Science, VJTI, Mumbai)

** (Department of Computer Science, VJTI, Mumbai)

*** (Department of Computer Science, VJTI, Mumbai)

ABSTRACT
This paper conducts an analysis of various software

development approaches, i.e. sequential, incremental,

evolutionary, specialized and agile. An example of each

approach is considered – Waterfall model (sequential

approach), Incremental Model (incremental approach),

Spiral Model (evolutionary approach), Formal Methods

Model (specialized approach), Extreme Programming

Model (agile approach) and RUP. This paper elaborates

these models, as well as, it compares and contrasts

between these different models.

Keywords - About five key words in alphabetical order,

separated by comma

1. INTRODUCTION

Today, the computer has become a very crucial part of our

life. It has become indispensible as it is used in various

fields of life, such as, industry, medicine, education,

commerce and even agriculture. Organizations have become

more dependent on computer in their works as a result of

computer technology. Computer is considered a time-

saving device and its progress helps in executing complex,

long, repeated processes in a very short time with a high

speed. In addition to using computer for work, people use it

for fun and entertainment. Noticeably, the number of

companies that produce software programs for the purpose

of facilitating works of offices, administrations, banks, etc,

has increased recently which results in the difficulty of

enumerating such companies. During the previous four

decades, software has been developed from a tool used for

analyzing information or solving a problem to a product in

itself. However, the early programming stages have created

a number of problems turning software an obstacle to

software development particularly those relying on

computers. Software consists of documents and programs

that contain a collection that has been established to be a

part of software engineering procedures. Moreover, the aim

of software engineering is to create a suitable working

product that constructs programs of high quality.[1]

2. ACTIVITIES OF SOFTWARE DEVELOPMENT

Problem solving in software development consists of the

following activities:

i. Understanding the problem

ii. Deciding a plan for the solution

iii. Coding the planned solution

iv. Testing the actual program [2]

These activities may be very complex for large systems.

So, each of the activity has to be broken into smaller sub-

activities or steps. These steps are then handled effectively

to produce a software project or system.

The basic steps involved in software project

development are:

i. Requirement analysis

ii. Design

iii. Coding

iv. Testing

In addition, there is a fifth step, ―maintenance‖ that

consists of maintaining the system after deployment, i.e.

delivery to the customer. Unlike hardware, software does

not wear out. But, it is very likely that some errors of the

system, which were not found during the software testing

phase, may be found by the customer. These errors or bugs

need to be reported and resolved immediately. Also, over

time, as newer technologies and platforms are developed,

system starts becoming outdated. It is important to provide

new features to the system after intervals and make it

compatible with various latest platforms.

3. GENERAL APPROACHES

The various approaches to developing a software

development process model are as follows:

3.1 Sequential Approach

Sequential approaches (e.g. waterfall model, V-

model) refer to the completion of the work within one

monolithic cycle. Projects are sequenced into a set of

steps that are completed serially and typically span from

determination of user needs to validation that the given

solution satisfies the user. Progress is carried out in

linear fashion enabling the passing of control and

information to the next phase when pre-defined

milestones are reached and accomplished. This

approach is highly structured, provides an idealised

format for the contract and allows maximum control

over the process. On the other hand, it is also resistant

to change and the need for corrections and re-work.

Note that some variations, as well as Royce’s original

formulation of the model, allow for revision and re-

tracing and may also incorporate prototyping or other

requirements gathering sequences encompassed within

the overall sequence frame[6].

The Waterfall Model:

Ashwini Mujumdar, Gayatri Masiwal, P. M. Chawan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2015-2021

2016 | P a g e

The waterfall model is the classical model of

software engineering. This model is one of the oldest

models and is widely used in government projects and

in many major companies. As this model emphasizes

planning in early stages, it ensures design flaws before

they develop. In addition, its intensive document and

planning make it work well for projects in which

quality control is a major concern.

The pure waterfall lifecycle consists of several non-

overlapping stages, as shown in the following figure.

The model begins with establishing system

requirements and software requirements and continues

with architectural design, detailed design, coding,

testing, and maintenance. The waterfall model serves as

a baseline for many other lifecycle models.

The steps followed in the waterfall model are:

i. Communication: establishes the expectations of

the stakeholders and hence useful in requirements

gathering.

ii. Planning: develops a well-defined plan of

execution of the project.

iii. Modeling: develops a model of the project before

developing the actual project.

iv. Construction: builds the actual project following

the plan of execution defined in the planning stage

and testing.

v. Deployment: the delivery of end-product to the

customer and its maintenance.

Fig. 1 Waterfall Model

The advantages of waterfall model are:

 Easy to understand and implement

 Reinforces good habits: define-before-design and

design-before-code.

 Identifies deliverables and milestones

 Works well on mature products and weak teams[1]

The disadvantages of the waterfall model are:

 Real projects rarely follow the sequential approach

 There is uncertainty at the beginning of the project

regarding requirements and goals. This model does

not accommodate these uncertainties very well.

 It does not yield a working version of the system

until late in the process.[7]

3.1 Incremental Approaches:
Incremental approaches emphasize phased

development by offering a series of linked mini-projects

(referred to as increments, releases or versions) working

from a pre-defined requirements specification up front.

Work on different parts and phases, is allowed to

overlap throughout the use of multiple mini-cycles

running in parallel. Each mini-cycle adds additional

functionality and capability. The approach is

underpinned by the assumption that it is possible to

isolate meaningful subsets that can be developed, tested

and implemented independently. Delivery of increments

is staggered as calendar time progresses. The first

increment often acts as the core product providing the

functionality to address the basic requirements. The

staggered release philosophy allows for learning and

feedback which can modify some of the customer

requirements in subsequent versions. Incremental

approaches are particularly useful when the full

complement of personnel required to complete the

project is not available and when there is an inability to

fully specify the required product or to fully formulate

the set of expectations[6].

The Incremental Model:

There are many situations in which initial software

requirements are reasonably well-defined, but the

overall scope of the development effort precludes a

purely linear process. In addition, there may be a

compelling need to provide a limited set of software

functionalities to a user quickly and then refine and

expand on that functionality in later software releases.

In such cases, a process model that is designed to

produce the software in increments is chosen.[7]

The incremental model combines elements of the

waterfall model in an iterative fashion. Each linear

sequence produces deliverable ―increments‖ of the

software. The first increment is the core product. That

is, basic requirements are addressed, but many

supplementary features (some known, others unknown)

remain undelivered.[7]

Ashwini Mujumdar, Gayatri Masiwal, P. M. Chawan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2015-2021

2017 | P a g e

Fig. 2 Incremental Model

The advantages of the incremental model are:

 Divides project into smaller parts

 Creates working model early and provides valuable

feedback

 Feedback from one phase provides design

information for the next phase

 Very useful when more staffing is unavailable

The disadvantages of the incremental model are:

 User community needs to be actively involved in

the project. This demands on time of the staff and

add project delay

 Communication and coordination skills take a

center stage

 Informal requests for improvement for each phase

may lead to confusion

 It may lead to ―scope creep‖

3.2 Evolutionary Approaches:
Evolutionary approaches recognize the great degree

of uncertainty embedded in certain projects and allow

developers and managers to execute partial versions of

the project while learning and acquiring additional

information and gradually evolving the conceptual

design. Evolutionary projects are defined in a limited

sense allowing a limited amount of work to take place

before making subsequent major decisions. Projects can

start with a macro estimate and general directions

allowing for the fine details to be filled-in in

evolutionary fashion. The initial implementation

benefits from exposure to user comments leading to a

series of iterations. Finite goals are thus allowed to

evolve based on the discovery of user needs and

changes in expectations along the development route.

Projects in this category are likely to be characterized

by a high degree of technological risk and lack of

understanding of full implications by both stakeholders

and developers. Evolutionary approaches are

particularly effective in change-intensive environments

or where resistance to change is likely to be strong.

The Spiral Model:

The spiral development model is a risk driven

process model generator that is used to guide multi-

stakeholder concurrent engineering of software

intensive systems. It has two main distinctive features.

One is cyclic approach for incrementally growing a

system’s degree of definition and implementation while

decreasing its degree of risk. The other is a set of

anchor-point milestones for ensuring the stakeholder

commitment to feasible and mutually satisfactory

system solutions.[7]

The spiral model is similar to the incremental

model, with more emphases placed on risk analysis.

The spiral model has four phases: Planning, Risk

Analysis, Engineering and Evaluation. A software

project repeatedly passes through these phases in

iterations (called Spirals in this model). In the baseline

spiral, starting in the planning phase, requirements are

gathered and risk is assessed. Each subsequent spiral

builds on the baseline spiral. Requirements are gathered

during the planning phase. In the risk analysis phase, a

process is undertaken to identify risk and alternate

solutions. A prototype is produced at the end of the risk

analysis phase. Software is produced in the engineering

phase, along with testing at the end of the phase. The

evaluation phase allows the customer to evaluate the

output of the project to date before the project continues

to the next spiral.[1]

In the spiral model, the angular component

represents progress, and the radius of the spiral

represents cost.[1]

Fig. 3 Spiral Model

A spiral model is divided into various activities

which include Analysis, Design, Implementation, Testing

and Deployment. The spiral is implemented in a clockwise

fashion, beginning at the center and working its way

outwards, during which it passes through each of the above

regions.

A spiral model is divided into a number of framework

activities, also called task regions. Typically, there are

between three and six task regions. Figure 2.8 depicts a

spiral model that contains six task regions:

• Customer communication—tasks required to establish

effective communication between developer and customer.

• Planning—tasks required to define resources, timelines,

and other project related information.

Ashwini Mujumdar, Gayatri Masiwal, P. M. Chawan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2015-2021

2018 | P a g e

• Risk analysis—tasks required to assess both technical and

management risks.

• Engineering—tasks required to build one or more

representations of the application.

• Construction and release—tasks required to construct,

test, install, and provide user support (e.g., documentation

and training).[7]

Unlike other process models that end when

software is delivered, the software model and be adapted to

apply throughout the life of the computer software. The first

circuit around the spiral might represent a ―concept

development project‖ which starts at the core of the spiral

and may continue for several iterations till the concept

development is complete. If the concept is to be developed

into an actual project, the process proceeds outwards on the

spiral and a ―new product development phase‖ commences.

The new product will evolve through a number of iterations

around the spiral, following the path that bounds the region

that has somewhat lighter shading than the core. In essence,

the spiral, when characterized in this way, remains operative

until the software is retired. There are times when the

process is dormant, but whenever a change is initiated, the

process starts at the appropriate entry point (e.g., product

enhancement).[7]

The advantages of spiral model are:

 Was designed to include the best features form

Waterfall and Prototyping Model

 Good for large and mission-critical projects

 Introduces a new component – risk assessment

 Similar to prototyping model, an initial version of

system is developed and modified based on input

from customer

The disadvantages of the spiral model are:

 Can be a costly model to use

 Risk analysis requires highly specific expertise

 Project’s success id highly dependent on risk

analysis phase

 Doesn’t work well for smaller projects

Specialized process models can take the

characteristics of any or many of the conventional

models presented in the above sections. However

specialized models tend to be applied when a narrowly

defined software engineering approach is chosen[7].

In some cases, these specialized models might

better be characterized as a collection of techniques or a

methodology for accomplishing a specific software

development goal.[7] However, they do imply a process

model which is highly project specific.

The Formal Methods Model:

The formal methods model encompasses a set of

activities that leads to formal mathematical

specification of the project or the computer software to

be developed. Formal methods enable a software

engineer to specify, develop and verify a computer-

based system by applying a rigorous mathematical

notation. A variation on this approach, called clean-

room software engineering, is currently applied by

some software development organizations.

When formal methods are used during

development, they provide a mechanism for eliminating

many of the problems that are difficult to overcome

using other software engineering paradigms.

Ambiguity, incompleteness and inconsistency can be

discovered and corrected more easily – not through ad-

hoc review, but through the application of mathematical

analysis. When formal methods are used during design,

they serve as a basis for program verification and

therefore enable the software engineer to discover and

correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal

methods model offers the promise of defect-free

software. Yet, concern about its application in business

environment has been voiced:

 The development of formal models is currently

quite time-consuming and expensive.

 Because few software developers have the

necessary background to apply formal

methods, extensive training is required.

 It is difficult to use the models as a

communication mechanism for technically

unsophisticated customers.

Fig. 4 Formal Methods Model Analysis

These concerns notwithstanding, the formal

methods approach has gained adherents among software

developers who must build safety-critical software,

such as aircraft avionics and medical devices, and

among developers who would suffer serious economic

hardship, should software errors occur.

3.3 Agile Approaches:
Agile development is claimed to be a creative and

responsive effort to address users’ needs focused on the

requirement to deliver relevant working business

applications quicker and cheaper. The application is

typically delivered in incremental (or evolutionary or

iterative) fashion. The agile development approaches

are typically concerned with maintaining user

involvement through the application of design teams

and special workshops. The delivered increments tend

to be small and limited to short delivery periods to

ensure rapid completion. The management strategy

utilized relies on the imposition of timeboxing, the strict

Ashwini Mujumdar, Gayatri Masiwal, P. M. Chawan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2015-2021

2019 | P a g e

delivery to target which dictates the scoping, the

selection of functionality to be delivered and the

adjustments to meet the deadlines. Agile development is

particularly useful in environments that change steadily

and impose demands of early (partial) solutions. Agile

approaches support the notion of concurrent

development and delivery within an overall planned

context.

Extreme Programming:

It is an approach to development, based on the

development and delivery of very small increments of

functionality. It relies on constant code improvement,

user involvement in the development team and pair

wise programming. It can be difficult to keep the

interest of customers who are involved in the process.

Team members may be unsuited to the intense

involvement that characterizes agile methods.

Prioritizing changes can be difficult where there are

multiple stakeholders. Maintaining simplicity requires

extra work. Contracts may be a problem as with other

approaches to iterative development.[1]

Fig. 5 Extreme Programming

Extreme Programming Practices

Incremental planning: Requirements are recorded on Story

Cards and the Stories to be included in a release are

determined by the time available and their relative priority.

The developers break these stories into development

"Tasks".

Small Releases: The minimal useful set of functionality that

provides business value is developed first. Releases of the

system are frequent and incrementally add functionality to

the first release.

Simple Design: Enough design is carried out to meet the

current requirements and no more.

Test first development: An automated unit test framework

is used to write tests for a new piece of functionality before

functionality itself is implemented.

Refactoring: All developers are expected to re-factor the

code continuously as soon as possible code improvements

are found. This keeps the code simple and maintainable.

Pair Programming: Developers work in pairs, checking

each other’s work and providing support to do a good job.

Collective Ownership: The pairs of developers work on all

areas of the system, so that no islands of expertise develop

and all the developers own all the code. Anyone can change

anything.

Continuous Integration: As soon as work on a task is

complete, it is integrated into the whole system. After any

such integration, all the unit tests in the system must pass.

Sustainable pace: Large amounts of over-time are not

considered acceptable as the net effect is often to reduce

code quality and medium term productivity.

On-site Customer: A representative of the end-user of the

system (the Customer) should be available full time for the

use of the XP team. In an extreme programming process, the

customer is a member of the development team and is

responsible for bringing system requirements to the team for

implementation.

 XP and agile principles

1. Incremental development is supported through

small, frequent system releases.

2. Customer involvement means full-time customer

engagement with the team.

3. People not process through pair programming,

collective ownership and a process that avoids long

working hours.

4. Change supported through regular system releases.

5. Maintaining simplicity through constant refactoring

of code [1].

 Advantages

1. Lightweight methods suit small-medium size

projects.

2. Produces good team cohesion.

3. Emphasizes final product.

4. Iterative.

5. Test based approach to requirements and quality

assurance.

 Disadvantages

1. Difficult to scale up to large projects where

documentation is essential.

2. Needs experience and skill if not to degenerate into

code-and-fix.

3. Programming pairs is costly.

4. Test case construction is a difficult and specialized

skill.[1]

Each of the approaches described above appears to have

clear benefits, at least from a theoretical perspective.

However the variety of different approaches leads to a

dilemma when it comes to selecting the most suitable one

for a project. At the beginning of every project the manager

is expected to commit to a development approach. This is

often driven by past experience or other projects that are, or

have been, undertaken by the organization. Project managers

are expected to select the most suitable approach that will

maximize the chances of successfully delivering a product

that will address the client’s needs and prove to be both

useful and usable.

The choice should clearly relate to the relative merits of

each approach.

3.4 Rational Unified Process

The Rational Unified Process (RUP) is an iterative

software development process framework created by the

Rational Software Corporation. RUP is not a single concrete

prescriptive model, but rather an adaptable process

Ashwini Mujumdar, Gayatri Masiwal, P. M. Chawan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2015-2021

2020 | P a g e

framework, intended to be tailored by the development

organizations and software project teams that will select the

elements of the process that are appropriate for their needs.

RUP is a specific implementation of the Unified Process.

RUP is based on a set of building blocks, or content

elements, describing what is to be produced, the necessary

skills required and the step-by-step explanation describing

how specific development goals are to be achieved.

soft ware increment

Release

Incept ion

Elaborat ion

const ruct ion

t ransit ion

product ion
Fig. 6 Rational Unified Process [7]

1) Four Project Life cycle Phases:

The RUP has determined a project life cycle consisting of

four phases. These phases allow the process to be presented

at a high level in a similar way to how a 'waterfall'-styled

project might be presented, although in essence the key to

the process lies in the iterations of development that lie

within all of the phases. Also, each phase has one key

objective and milestone at the end that denotes the objective

being accomplished. The visualization of RUP phases and

disciplines over time is referred to as the RUP hump chart.

[7]

Incept ion Elaborat ion Const ruct ion Transit ion Product ion

UP Phases

Workflows

Requirements

Analysis

Design

Implementation

Test

Iterations #1 #2 #n-1 #n

Support

Fig. 7 Four phases of Rational Unified Process [7]

 The various process models discussed above can be

summarized as follows:

Model/Features Waterfall Incremental Spiral Agile RUP

Requirement

Specifications
Beginning Beginning Beginning

Frequently

changed
Beginning

Cost Low Low Expensive Very High Expensive

Resource Control Yes Yes Yes No Yes

Simplicity Simple Intermediate Intermediate Complex Simple and clear

Risk Analysis
Only at

beginning

No risk

analysis
Yes Yes Yes

User Involvement
Only at

beginning
Intermediate High High

Only at beginning of last

phase

Flexibility Rigid Less Flexible Flexible
Highly

Flexible
Considerable

Reusability Limited Yes Yes
Use Case

reuse

Supports reusability of

existing classes

TABLE 1. Comparison between different software development models

Ashwini Mujumdar, Gayatri Masiwal, P. M. Chawan / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2015-2021

2021 | P a g e

4. CONCLUSION

After completing this analysis, we have concluded

that there are many existing models for developing

systems and project requirements. Of these, waterfall

model and spiral model are more commonly used

than the others. Each model has advantages and

disadvantages. Each model tries to eliminate the

disadvantages of the previous model.

References

[1] Nabil Mohammed Ali Munassar1 and A.

Govardhan, A Comparison Between Five

Models Of Software Engineering, IJCSI

International Journal of Computer Science

Issues, Vol. 7, Issue 5, September 2010

[2] Sanjana Taya and Shaveta Gupta, Comparative

Analysis of Software Development Life Cycle

Models, IJCST Vol. 2, Iss ue 4, Oct . - Dec.

2011

[3] Alan M. Davis, Edward H. Bersoff and

Edward R. Comer, A Strategy for comparing

Alternative Software Development Life Cycle

Models, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 14, NO.

10, OCTOBER 1988

[4] Nicholas H. Malcolm, Software Development

Life Cycles: History and Future

[5] Jim Hurst, Comparing Software Development

Life Cycles

[6] Oddur Benediktsson, Darren Dalcher and

Helgi Thorbergsson, Comparison of Software

Development Life Cycles: A Multiproject

Experiment

[7] Roger Pressman, Software Engineering: A

Practitioner’s Approach, Sixth Edition,

McGraw-Hill Publication

