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ABSTRACT 
In this paper the differential equations of equilibrium 

for flexural-torsional-distortional analysis of thin-

walled mono symmetric box girder structures were 

derived using Vlasov’s theory. To ensure that the 

derived equations depict the real life behaviour of mono 

symmetric box girder structures the interaction between 

all the strain modes of flexure, torsion and distortion 

were taken into consideration. 

     By carrying out analysis using similar equations 

derived by the authors for flexural-torsional analysis, 

flexural-distortional analysis and torsional-distortional 

analysis of mono symmetric box girder frames, the 

effects of flexural-torsional-distortional strain modes 

interactions on the behaviour of such structures were 

established. This involved flexural-torsional analysis, 

flexural-distortional analysis,  torsional-distortional 

analysis and flexural-torsional-distortional analysis of a 

mono symmetric box girder frame. 

     The derived equations are fourth order ordinary 

differential equations of equilibrium which were 

integrated by method of trigonometric series with 

accelerated convergence. The results show that 

flexural-torsional analysis, flexural-distortional 

analysis and torsional-distortional analysis have 

inherent errors due to the negligence of full interactions 

between the strain modes of flexure, torsion and 

distortion. 

 

Keywords: Box girder, deformation, distortion, flexure,  

interaction, mono symmetric, thin-walled, torsion. 

 

1. Introduction 
   Basically, a curved structural element has two 

interacting forces: bending and torsion. The study of 

curved elrments offers only one instance where bending 

and torsional forces simultaneously ocure. Torsional 

loads consisting of opposing vertical forces result from 

gravity loads that are eccentric to the centre line of the 

girder and they give rise to bending and torsion.   

Torsional load can be modeled as a uniform (Saint 

Venant) torsional component and a distortional 

component. Therefore  an eccentric load on a bridge 

structure introduces interaction between bending, pure 

torsion and distortion. The flexural-torsional- 

distortional interactions are of great interest particularly 

in a thin walled box structure where the geometry of the 

cross section comes into play. 

     Research [1] has shown that doubly symmetric 

sections have only one interaction of strain modes, i.e.  

torsional strain mode and distortional strain mode 

interaction. A mono-symmetric section on the other 

hand, has three strain modes interactions; torsion 

interacts with distortion and each of these strain modes 

interacts with flexure about the non axis of symmetry. 

Thus we have torsional-distortional interaction, flexural-

torsional interaction, and flexural-distortional 

interaction.  A non symmetric section has multiple 

strain modes interaction; each of torsion and distortion 

interacts with flexure about both axes of non-symmetry 

in addition to the interaction between themselves.  Thus, 

we have torsional-distortional interaction, torsional-

flexural interaction in major and minor axes and 

flexural-distortional interaction in major and minor 

axes. These strain modes interactions are quite 

inseparable that it is not possible to examine only one 

interaction in isolation of others. 

    The objective of this study is to derive a set of 

differential equations of equilibrium governing the 

flexural-torsoinal-distortional behaviour of thin-walled 

mono symmetric box girder structures on the basis of 

Vlasov’s theory and to apply the obtained equatons in 

the analysis of single cell mono symmetric box girder 

structure to obtain the flexural, torsional and distortional 

deformations of the girder. 

 

2. Review of Past Work 
     Recent literatures, Hsu et al [2], Fan and Helwig [3],  

Sennah and Kennedy [4], on straight and curved box 

girder bridges deal with analytical formulations to better 

understand the behaviour of these complex structural 

systems. Few authors; Okil and El-tawil [5], Sennah and 

Kennedy [4 ] have undertaken experimental studies to 

investigate the accuracy of existing methods. Before the 

advent of Vlasov’s ‘theory of thin-walled beams’, 

Vlasov [6], the conventional method of predicting 
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warping and distortional stresses is by beam on elastic 

foundation (BEF) analogy. This analogy ignores the 

effect of shear deformations and takes no account of the 

cross sectional deformations which are likely to occur in 

a thin walled box girder structure 

     Several investigators; Bazant and El-Nimeiri [7], 

Zhang and Lyons [8], Boswell and Zhang [9], Usuki 

[10], Waldron [11], Paavola [12], Razaqpur and Lui 

[13], Fu and Hsu [14], Tesar [15], have combined thin-

walled beam theory of Vlasov and the finite element 

technique to develop a thin walled box element for 

elastic analysis of straight and curved cellular bridges. 

Osadebe and Chidolue [16], [17], obtained fourth order 

differential equations of torsional-distortional 

equilibrium, flexural-torsional equilibrium and flexural 

distortional equilibrium for the analysis of mono 

symmetric box girder structures using Vlasov’s theory 

with modifications by Varbanov [18].  

      Various theories were therefore postulated by 

different authors examining methods of analysis, both 

classical and numerical. A few others however carried 

out tests on prototype models to verify the authenticity 

of the theories. The authors are of the view  that 

Vlasov’s theory captures all peculiarities of cross 

sectional deformations such as warping, torsion, 

distortion etc.  The theory is therefore adopted in this 

work . 

 

3. Potential Energy of a Thin-Walled Box 

Structure 
    The potential energy of a box structure in terms of the 

strain energy and the work done by external loads is as 

follows, Osadebe and Chidolue [16]: 

'( ) '( )
2

ij i j

E
a U x U x dx  

( ) ( ) ( ) '( )
2

ij i j kj k j

G
b U x U x c U x V x dx    + 

+  ( ) '( ) '( ) '( )
2

ih i h kh k h

G
c U x V x r V x V x dx  + 

+ ( ) ( )
2

hk k h

E
s V x V x dx - h hq V dx                      (1) 

 

where   = the total potential energy of the box 

structure, 

Ui(x) and Vk(x) are unknown functions which express 

the laws governing the variation of the displacements 

along the length of the box girder frame. 

hq = Line load per unit area applied in the plane of the 

box girder plates                                                                                         

E = Modulus of elasticity 

G = Shear modulus 

, ,ij ij kja b c , r
kh

, s
hk

  are Vlasov’s coefficients 

given by the  following expressions. 

( ) ( )ij ji i ja a s s dA                               (a) 

' '( ) ( )ij ji i jb b s s dA                                (b) 

' ( ) ( )kj jk k jc c s s dA                             (c) 

'( ) ( )ih hi i kc c s s dA                              (d) 

( ) ( ) ;kh hk k hr r s s dA                            (e)      (2) 

( )

( ) ( )1 k h
kh hk

s

M s M s
s s ds

E EI
                   (f)  

h hq q ds                                               (g ) 

These coefficients depend on a combination of 

elementary displacements or strain fields; three in the 

longitudinal direction and four in the transverse 

direction. The strain fields are: 

1  = out of plane displacement due to vertical load  

2  = out of plane displacement due to horizontal load 

normal to bridge longitudinal/vertical plane, 

3 =out of plane displacement due to warping of the 

cross section,  

1 = in-plane displacement due to vertical load,  

2 in-plane displacement due to horizontal load normal 

to bridge longitudinal/vertical plane, 

3 in-plane displacement due to distortion of the cross 

section,  

4 in-plane displacement due to pure rotation,  

Some or all of these strain modes may be present in a 

given frame depending on the geometry of the cross 

section and the nature of loading. 

 

4. Governing Equations of Equilibrium 

     The governing equations of flexural-torsional-

distortional equilibrium are obtained by minimizing the 

energy functional eqn .(1), with respect to its functional 

variables u(x) and v(x) using Euler Lagrange technique, 

Elgolts[19] 

 Minimizing with respect to u(x) we obtain; 

1 1 1

''( ) - ( ) - '( ) 0
m m n

ij i ij i kj k

i i k

k a U x b U x c V x
  

       (3)   

Minimizing with respect to v(x) we have; 
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'( ) ( )ih i hk kc U x s V x 
1

''( ) 0kh k hr V x q
G

                             (4)                   

 where, 2(1 )
E

G
                                           (5)                                                                                          

Equations (3) and (4) are Vlasov’s generalized 

differential equations of flexural-torsional-distortional 

equilibrium for a box girder. They  are presented in 

matrix form as follows: 

111 12 13 11 12 13 1

21 22 23 2 21 22 23 2

31 32 33 31 32 33 33

''
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''
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a a a U b b b U
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 
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           

 

                              

-

1
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2

21 22 23 24

3
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4

'
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0
'
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
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                      (6)                  
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                (7) 

 

5. Strain Mode Diagrams and Evaluation of 

Vlasov’s Coefficients 
     Fig.1a shows the cross section of a  single cell mono 

symmetric box girder structure (regarded as a frame) for 

which the strain modes diagrams are to be obtained and 

Vlasov’s coefficients computed for the analysis of the 

frame. 

     If we assume the normal beam theory, i.e., neutral 

axis remaining neutral before and after bending, then 

the  displacement φ1 (strain mode 1)  at any distance R, 

from the centroid of the cross section is given by 

1 R  where   is the distortion angle. If we assume 

a unit rotation of the vertical z axis then 1 R  , at any 

point on the cross section. Thus, 1   is a property of the 

cross section obtained by plotting the displacement of 

the members of the cross section when the vertical (z-z) 

axis is rotated through a unit radian. 

    Similarly, if the load is acting in horizontal (y- y) 

direction, normal to the x-z plane then the bending is in 

x-z plane and y axis is rotated through angle θ2 giving 

rise to 
2  (strain mode 2) displacement out of plane. 

The values of 
2  are obtained for the members of the 

cross section by plotting the displacement of the cross 

section when y-axis is rotated through a unit radian. The 

warping function 3  (strain mode 3), of the beam cross 

section is the out of plane displacement of the cross 

section when the beam is twisted about its axis through 

the pole, one radian per unit length without bending in 

either z or y direction and without longitudinal 

extension. ψ1 and ψ2 are in-plane displacements of the 

cross section in x-z and x-y planes respectively while ψ3  

is  the distortion of the cross section.  

      In an un published work the authors have shown that 

these in-plane displacement quantities ψ1, ψ2 and ψ3 are 

the same as the derivatives of their corresponding out of 

plane displacements. Consequently, ψ1, ψ2 and ψ3 are 

obtained by numerical differentiation of 1 , 2   and 

3   diagrams respectively. Strain mode 4, ψ4, is the 

displacement diagram of the beam cross section when 

the section is rotated one radian in say, a clockwise 

direction, about its centroidal axis. Thus, ψ4 is directly 

proportional to the perpendicular distance  ( radius of 

rotation) from the centroidal axis to the members of the 

cross section. ψ4 is assumed to be positive if the 

member moves in the positive directions of the 

coordinate axes and negative otherwise. 

     Figs.1(b) to 1(h) show the strain modes diagrams for 

the single cell mono symmetric box girder frame in 

Fig.1(a). The coefficients , , ,ij ij kj iha b c c and khr , of the 

governing equations of equilibrium  are computed with 

the aid of Morh’s integral chart using the strain modes 

diagrams. 

   

6. Flexural-Torsional-Distortional Equilibrium 

Equations 
     The relevant coefficients for flexural-torsional-

distortional equilibrium are those involving strain 

modes 2, 3 and 4. These are; a32, a33, b32, b33, c32, c33, 

c34, c42, r22, r32, r33, r34, r42,  s33, and r44. Substituting 

these into the matrix eqns .(6) and (7) and multiplying 

out, noting that , ,ij ji ij jia a b b         etc, we obtain; 

'' ''- - - '
22 2 23 3 22 2 23 3 22 2

ka U ka U b U b U c V

'- ' 0
23 3 24 4

c V c V                                               (8) 

'' ''- -
32 2 33 3 32 2 33 3

ka U ka U b U b U -                                                               

- '- '- ' 0
32 2 33 3 34 4

c V c V c V                                         (9) 
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2' ' '' '' '' -
22 2 23 3 22 2 23 3 24 4

q
c U c U r V r V r V

G
       

                                                                           (10) 

' '- '' ''
32 2 33 3 33 3 32 2 33 3

c U c U ks V r V r V   +                                                              

3'' -
34 4

q
r V

G
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4' ' '' '' '' -
42 2 43 3 42 2 43 3 44 4

q
c U c U r V r V r V

G
      
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Simplifying further we obtain the coupled differential 

equations of flexural-torsional-distortional equilibrium for 

mono symmetric sections as follows. 

4 2 5 3 6 4 1 3 3'' '' ''- -V V V V K          (a) 

4 2 5 3 6 4 7 2 8 3- ''- ''iv iv ivV V V V V      _ 

9 4 2 3 4- ''V V K     (b) (13)                               

7 2 8 3 9 4 10 2 11 3- ''- ''iv iv ivV V V V V       

12 4 3 3 5- ''V V K                                (c)       

 

where 

32 3222 22
1

33 23 23 33

- / -
r cr c

c c c c


   
    
   

34 3224 22
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33 23 23 33

- / -
r cr c

c c c c


   
    
   

 

3222
3 33 33

23 33
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
 

  
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4 22 1 5 23 1 6 22 2 23 3; ; ( )ka ka k a a         

7 32 1 8 33 1 9 32 2 33 3; ; ( )ka ka k a a         

33 23 23 33
1

32 22 22 32
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r r c c

c c c c


   
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34 23 3324
2
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- / -
r c cr

c c c c


   
    
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23 33
3 33 32

22 32

/ -
c c

ks c
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
 

  
 

 

 4 42 1 42 ;c r    5 43 1 43 ;c r     

 6 42 2 43 2 44c c r     ; 7 22 1 22β =(b α +c )   

8 23 3 23 1 22 3 23( );ka b k c         

9 22 2 24 23 2-( )b c b     ; 10 32 1 32( )b c      

11 32 3 33 1 33 3 33( );ka b k c       

12 32 2 34 33 2( )b c b      

 1 42 3 43 3 ;c c    2 22 3 23 3( );b b      
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1 3 32 2 22
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/ - / -
c c c c

K q c G q c G
c c c c

   
    

   
     

32 3222 22
2 3 33 2 23

23 33 23 33

/ - / -
c cc c

K q c G q c G
c c c c

   
    

   

3 4 42 2 43 1/K q G c K C K   ;     4 22 2 23 1K b K b K  ;    

5 32 2 33 1K b K b K   

 

7. Analysis of Single Cell Mono Symmetric Box 

Girder Structure 
 In order to determine the effect of the interaction between 

flexure, torsion and distortion on the  mono symmetric box 

girder structure, the following analyses were carried out. (a) 

Flexural- torsional analysis, (b) flexural-distortional 

analysis, (c) torsional-distortional analysis and (d) flexural-

torsional-distortional analysis. 

     Live loads were considered according to AASHTO-

LRFD [19] , following the HL-93 loading: uniform lane load 

of 9.3N/mm distributed over a 3m width plus tandem load of 

two 110 KN axles. The loads are positioned at the outermost 

possible location to generate the maximum torsional effects. 

A 50m span simply supported bridge deck structure was 

considered. The obtained torsional loads are  

3 4157.16 , 1446.505q KN q KN  . 

     The full text on flexural-torsional analysis, flexural-

distortional analysis and torsional-distortional analysis  of 

the single cell mono symmetric box girder structure are 

given by Oadebe and Chidolue in references [21], [22] and 

[16] respectively. The obtained results are as follows.  

 

7.1 Flexural-Torsional Analysis 

The differential equations of flexural-torsional equilibrium 

for mono symmetric box girder structures are as follows: 

 

2 4 4

-4

-5

4

157.502 915.327 49.910 ''

4.4932*10 ( )

'' -1.206 10 ( )

iv ivV V V

a

V x b

 

 



                  (14)                                                                           

  Integrating by method of trigonometric series with 

accelerated convergence we have, 

-3

2 ( ) 79.73*10
50

x
V x Sin


 ;   

-3

4 ( ) 3.055*10
50

x
V x Sin


                                         (15)                                                                                                                                                          

 

7.2 Flexural-Distortional Analysis 

The coupled differential equations of flexural-distortional 

equilibrium for mono symmetric box girder structures are as 

follows : 

  
-4

2 3 3

-6

62.625 -0.675 -8.2517*10 ''

4.47545*10 ( )

iv ivV V V

a
-4

2 3 3

-4 -5

-0.675 1.893 -6.04*10 ''

4.5487*10 2.0463*10 ( )

iv ivV V V

b



 
 (16)                                                            
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Integrating by method of trigonometric series with 

accelerated convergence we have: 

-3
( ) 4.272 *10

2 50

-2
( ) 4.213*10

3 50

x
V x Sin

x
V x Sin









                                    (17)                                       

7.3 Torsional-Distortional Analysis 

The coupled differential equations of torsional-distortional 

equilibrium for mono symmetric box girder structures are as 

follows: 

 

-6
2.371 27.405 -18.963 '' 2.120 *10 ( )

3 4 4

-4 -4
-18.964 - 5.503*10 1.9163*10 ( )

4 3

iv iv
V V V a

iv
V V b

 



    (18)                                                                  

Integrating by method of trigonometric series with 

accelerated convergence we have 

    

-2
( ) 3.268*10 ;

3 50

-3
( ) 2.80 *10

4 50

x
V x Sin

x
V x Sin









                                   (19) 

7.4 Flexural-Torsional-Distortional Analysis                                                                                      

 The governing equations of equilibrium are given by eqns 

(13) The relevant coefficients are as follows. 

22 23 3325.05, -0.270, 0.757,a a a     

22 22 22 2.982b c r   ,  23 23 23 -0.153b c r    

33 33 33 441.407, 14.616b c r r     

24 42 24 42 2.515c c r r       

34 43 34 43 1.265c c r r         

-4 -4

33 0.261*6.9712*10 1.8195*10s    

0.0 , 154.58 , 1446.505
2 3 4

q KN q KN q KN      The 

coefficients of the governing equations are as follows. 

1α = -1; 2α =0.802 ; 
-5

3α = -1.6679*10 ;  

4 -62.625  ;  5 0.675   

6 50.7734  ; 7 0.675  8 -1.893  ;  

9 -2.078   

1 -1  ;  2 -0.812  ; 

-4

3 -3.251*10  ; 4 50; 0      ; 6 11572  ;   

7 0  ; 
-4

8 -7.89*10  ;   9 -1.266  ;  

10 0  ;
-4

11 -5.820*10  ;  
-4

12β = -1.90*10   

-4

1 -3.532*10  ;  
-9

2 4.8*10  ; 
-4

3 -4.350*10   

-5

1 -1.4625*10K  ;  
-7

2 -7.505*10K  ;  

-4

3 1.7115*10K   ; 
-6

4 -2.123*10K  ;  

-5

5 -2.046*10K   

 

Substituting the coefficients and the constants into eqn.(13) 

we obtain: 

-4 -4
11.572 '' 3.532*10 -1.7115*10 ( )

4 3
V V a                                                                   

-4
- 62.625 0.675 50.773 7.89 *10

2 3 4 3

-6
1.266 '' -2.123*10 ( )

4

-4
0.675 -1.893 - 2.078 5.820 *10 ''

2 3 4 3

-4 -4 -5
1.90 *10 ''- 4.35*10 - 2.046 *10 ( )

4 3

iv iv iv
V V V V

V b

iv iv iv
V V V V

V V c

  

 

 

 

 

   

     (21)                                                                                    

Integrating by method of trigonometric series with 

accelerated convergence we have, 

-2
( ) -3.287 *10

2 50

x
V x Sin


 ; 

-2
( ) 4.282*10

3 50

x
V x Sin


  ;                   (22)   

-3
( ) 4.077 *10

4 50

x
V x Sin


                       

8. Discussion of Results 
     The results of the analyses of the single cell mono 

symmetric box girder structure are presented in Figs. 2, 3, 4 

and 5. Fig. 2 shows the variation of flexural and torsional 

displacements along the length of the girder in a situation 

where flexural and torsional strain modes interact with each 

other alone. The maximum mid span flexural deformation 

was  80mm and that of torsional deformation was 3mm. Fig. 

3 shows the variation of  flexural and distortional 

displacements along the length of the girder where flexural 

strain mode interacts with distortional strain mode alone.  

The maximum (mid-span) flexural and distortional 

deformations were 4mm and 42mm respectively.  

By comparing Figs 2 and 3 we noticed that the effect of the 

interaction between flexural and distortional strain modes 

was 95% reduction in the flexural deformation obtained in 

the case of flexural-torsional analysis. 

     Fig. 4 shows the variation of torsional and distortional 

displacements along the length of the girder in  a situation 

where torsional strain mode interacts with  distortional strain 

mode alone. The maximum (mid-span) torsional 

deformation was 3mm and that of distortional deformation 

was 33mm. By comparing Fig. 4 with Fig. 2 we observed 

that the maximum (mid-span) torsional deformation 

remained relatively unchanged in both flexural-torsional 

analysis and torsional-distortional analysis. However, by 

comparing Fig .4 with Fig. 3 we discover that the effect of 

the interaction between torsional and distortional strain 
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modes was 21% reduction in the distortional deformation 

obtained for flexural and distortional strain modes 

interaction.  
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     In a real life situation, flexural-torsional-

distortional interactions  are inseparable as can be 

seen from eqns. (13) which are coupled. Fig.5 

therefore represents the true behaviour of a real life 

structure. It shows the variation of flexural 

displacements, torsional displacements and 

distortional displacements along the length of the box 

girder structure. The maximum mid-span flexural 

deformation was 33mm while those of torsional and 

distortional deformations were 4mm and 43mm 

respectively. By comparing  Figs. 2, 3 and 4 with Fig. 

5,  we ascertained that: (a) the results for flexural-

torsional analysis of the single cell mono symmetric box 

girder frame,  showed 59% increase in the flexural 

deformation over the real life situation, (b) for flexural-

distortional analysis the results had 88% reduction in the 

flexural deformation below the real life situation, (c) for 

torsional-distortional analysis  the results  confirm 25% 

reduction in the torsional deformation and 23% reduction 

in the distortional deformation, all below the real life 

situation.         

Fig.3 Variation of flexural and distortional displacements along the length of the girder  

Fig. 2: Variation of flexural and torsional displacements along the length of the girder  
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9. Conclusion 
The results obtained from flexural-torsional analysis, 

flexural- distortional analysis, and torsional-distortional 

analysis of the mono symmetric box girder frame have 

inherent errors due to the negligence of some of the 

interactions between the strain modes of flexure, torsion 

and distortion. Flexural-torsional-distortional analysis of 

the frame depicts the real life behaviour of such 

structures as it makes provisions for all strain modes 

interactions. The derived equations of flexural-

torsional-distortional equilibrium eqn. (13), enables 

such complete analysis to be easily carried out. 

 

 

Fig.4 Variation of torsional and distortional displacements along the length of the girder  
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