
Krishna Mohan, Surekha Alokam,

MHM Krishna Prasad

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1401-1405

1401 | P a g e

An Efficient Decision Tree For Uncertain Data

Krishna Mohan
*1

, Surekha Alokam
#1

,

MHM Krishna Prasad

 #2

1,2
Associate professor, Dept. of Computer Science Jawaharlal Nehru Technological University

*1
Kakinada,

#2
Vijayanagaram, Andhra Pradesh.

#1
M.Tech, Computer Science Department, JNTU Kakinada, Andhra Pradesh.

Abstract: To handle known values and data we have

traditional decision trees. Decision tree is used for

classification technique. We propose a decision tree based

classification for uncertain data. Data uncertainty is commonly

exists in many applications during data collection, such as

measurement/quantisation errors, data staleness, and multiple

repeated measurements. With the use of uncertainty value of

data is not represented by single value, but by multiple values

forming a probability distribution. In this paper we extend

traditional decision tree algorithms to handle both certain data

and uncertain datasets. Here the uncertainty is handled by

considering the probability density function (pdf). The

resulting classifiers are more accurate than the traditional one.

we can use these algorithms for handling both categorical data

as well as numerical data also.

Keywords: Uncertain Data, Decision tree, Classification, Data

Mining

I. Introduction.
 Decision trees are a simple yet widely used method for

classification and predictive modeling. A decision tree

partitions data into smaller segments called terminal nodes.

Each terminal node is assigned a class label[2,6,10]. The non-

terminal nodes, which include the root and other internal

nodes, contain attribute test conditions to differentiate each

record from others that have different characteristics. This

process terminates when the subsets cannot be partitioned

further. In this paper we study how to control data uncertainty

by using decision tree classification. A simple way to handle

data uncertainty is to abstract probability distribution by

means and variances. This approach is called Averaging. Here

we have another approach also that is called Distribution

based approach in this complete information is utilized. In this

paper the Decision tree can handle both numerical and

categorical data, while many other techniques are usually

specialized in analyzing datasets that have only one type data.

Our goals are 1) To invent an algorithm for building decision

trees for uncertain data using Distribution based approach.

2) To check whether the Distribution approach could lead to

higher accuracy when compared with averaging.

3) Pruning techniques are derived to significantly improve the

computational efficiency of Distribution based algorithm.

Data uncertainty arises basically in many applications due to

various reasons. We have three categories here: measurement

errors, data staleness, and repeated measurements.

 1) Measurement Errors: Data obtained from measurements

by physical devices are often not precise due to measurement

errors. For example, thermometer measures body temperature

by measuring the temperature of the ear drum via an infrared

sensor. It is having some calibration error.

2) Data Staleness: In some of the applications, data values are

no longer fresh that means the values are continuously

changing. Example for this is location based tracking system.

3) Repeated Measurements: Basically the most common

uncertainty comes from repeated measurements. Example for

this is a patient’s body temperature could be taken multiple

times during a day.

II. Handling Uncertainty

Under our uncertainty model, a feature value is represented

not by a single value, vi,j , but by a pdf, fi,j. A decision tree

under our uncertainty model resembles that of the point-data

model. The difference lies in the way the tree is employed to

classify unseen test tuples. Similar to the training tuples, a test

tuple t0 contains uncertain attributes. Its feature vector is thus a

vector of pdf’s (f0,1,,,,,,,,f0,k).A classification model is thus a

function M that maps such a feature vector to a probability

distribution P over C. The probabilities for P are calculated as

follows. During these calculations, we associate each

intermediate tuple tx with a weight wx є [0,1]. Further, we

recursively define the quantity øn(c; tx,wx), which can be

interpreted as the conditional probability that tx has class label

c, when the sub tree rooted at n is used as an uncertain decision

tree to classify tuple tx with weight wx.

III. Algorithms

 In this section, we discuss two approaches for handling

uncertain data. The first approach, called ―Averaging‖,

transforms an uncertain dataset to a point-valued one by

replacing each pdf with its mean value. A decision tree can

then be built by applying a traditional tree construction

algorithm. To exploit the full information carried by the pdf’s,

our second approach, called ―Distribution-based‖, considers

all the sample points that constitute each pdf.

Krishna Mohan, Surekha Alokam,

MHM Krishna Prasad

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1401-1405

1402 | P a g e

A. Relative Averaging

 We simply replace each pdf with its expected value, thus

effectively converting the data tuples to point-valued tuples.

This reduces the problem back to that for point valued data,

and hence C4.5 [3] (with pre-pruning and post pruning) can be

reused. We call this approach AVG (for ―averaging‖).

 AVG is a greedy algorithm that builds a tree top-down.

When processing a node, we examine a set of tuples S. The

algorithm starts with the root node and with S being the set of

all training tuples. At each node n, we first check if all the

tuples in S have the same class label c. If so, we make n a leaf

node and set Pn(c) = 1, Pn(c΄) = 0 for all c΄≠ c. Otherwise, we

select an attribute Ajn and a split point zn and divide the tuples

into two subsets: ―left‖ and ―right‖. All tuples with vi,jn≤zn are

put in the ―left‖ subset L; the rest go to the ―right‖ subset R. If

either L or R is empty (even after exhausting all possible

choices of Ajn and zn), it is impossible to use the available

attributes to further discern the tuples in S. In that case, we

make n a leaf node. Moreover, the population of the tuples in

S for each class label induces the probability distribution Pn. In

particular, for each class label c єC, we assign to Pn(c) the

fraction of tuples in S that are labelled c. If neither L nor R is

empty, we make n an internal node and create child nodes for

it. We recursively invoke the algorithm on the ―left‖ child and

the ―right‖ child, passing to them the sets L and R,

respectively.

 To build a good decision tree, the choice of Ajn and zn is

crucial. At this point, we may assume that this selection is

performed by a black box algorithm Best Split, which takes a

set of tuples as parameter, and returns the best choice of

attribute and split point for those tuples. We will examine this

black box in details. Typically, Best Split is designed to select

the attribute and split point that minimizes the degree of

dispersion. The degree of dispersion can be measured in many

ways, such as entropy (from information theory) or Gini index

[4]. The choice of dispersion function affects the structure of

the resulting decision tree. In this paper we assume that

entropy is used as the measure since it is predominantly used

for building decision trees. The minimizations is taken over

the set of all possible attributes Aj (j = 1,…….,k), considering

all possible split points in dom(Aj). Given a set S = {t1,…….,

tm} of m tuples with point values, there are only m-1 ways to

partition S into two non-empty L and R sets. For each attribute

Aj , the split points to consider are given by the set of values

of the tuples under attribute Aj , i.e., {v1,j ,….,vm,j}. Among

these values, all but the largest one give valid split points.

 TABLE 1

(a) Relative Averaging (b) Distribution-based

Fig.1. Decision tree built from Example

B. Distubution-based Approach

For finding uncertain data, we adopt the same decision tree

building framework as described above for handling point

data. After an attribute Ajn and a split point zn has been chosen

for a node n, we have to split the set of tuples S into two

subsets L and R. The major difference from the point-data

case lies in the way the set S is split. Recall that the pdf of a

tuple ti є S under attribute Ajn spans the interval [ai,jn, bi,jn]. If

bi,jn ≤zn, the pdf of ti lies completely on the left of the split

point and thus ti is assigned to L. Similarly, we assign ti to R if

zn < ai,jn. If the pdf properly contains the split point, i.e.,

Ai,jn≤zn < bi,jn, we split ti into two fractional tuples tL and tR in

the same way as described in previous Section and add them

to L and R, respectively.

 The key to building a good decision tree is a good choice of

an attribute Ajn and a split point zn for each node n. With

uncertain data, however, the number of choices of a split point

given an attribute is not limited to m-1 point values. This is

because a tuple ti’s pdf spans a continuous range [ai,j , bi,j].

Moving the split point from ai,j to bi,j continuously changes the

probability pL =∫
Zn

ai,jn Fi,jn(x) dx (and likewise for pR). This

changes the fractional tuples tL and tR, and thus changes the

resulting tree. If we model a pdf [9,13] by s sample values, we

are approximating the pdf by a discrete distribution of s points.

In this case, as the split point moves from one end-point ai,j to

another end-point bi,j of the interval, the probability pL changes

in s steps. With m tuples, there are in total ms sample points.

So, there are at most ms-1 possible split points to consider.

Considering all k attributes, to determine the best (attribute,

split-point) pair thus require us to examine k(ms -1)

combinations of attributes and split points. Comparing to

AVG, UDT is s time more expensive. Note that splitting a

Krishna Mohan, Surekha Alokam,

MHM Krishna Prasad

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1401-1405

1403 | P a g e

tuple into two fractional tuples involves a calculation of the

probability pL, which requires an integration. We remark that

by storing the pdf in the form of a cumulative distribution, the

integration can be done by simply subtracting two cumulative

probabilities. Let us re-examine the example tuples in Table I

to see how the distribution-based algorithm can improve

classification accuracy. By taking into account the probability

distribution, UDT builds the tree shown in Figure 3 before

pre-pruning and post-pruning are applied. This tree is much

more elaborate than the tree shown in Figure 1(a), because we

are using more information and hence there are more choices

of split points. The tree in Figure 3 turns out to have a 100%

classification accuracy! After post-pruning, we get the tree in

Figure 1(b). Now, let us use the 6 tuples in Table I as testing

tuples4 to test the tree in Figure 1(b). For instance, the

classification result of tuple 3 gives P(A) = 5/8*0.80 + 3/8 *

0.212 = 0.5795 and P(B) = 5/8 * 0.20 + 3/8 * 0.788 = 0.4205.

Since the probability for ―A‖ is higher, we conclude that tuple

3 belongs to class ―A‖. All the other tuples are handled

similarly, using the label of the highest probability as the final

classification result. It turns out that all 6 tuples are classified

correctly. This hand-crafted example thus illustrates that by

considering probability distributions rather than just expected

values, we can potentially build a more accurate decision tree.

Fig.2. Example tree before post pruning

m=number of tuples, and s = number of samples per pdf. For

each such candidate attribute Aj and split point z, an entropy

H(z,Aj) has to be computed . Entropy calculations are the most

computation-intensive part of UDT. Our approach to

developing more efficient algorithms is to come up with

strategies for pruning candidate split points and entropy

calculations. Note that we are considering safe pruning here.

We are only pruning away candidate split points that give sub-

optimal entropy values. So, even after pruning, we are still

finding optimal split points. Therefore, the pruning algorithms

do not affect the resulting decision tree, which we have

verified in our experiments. It only eliminates sub-optimal

candidates from consideration, thereby speeding up the tree

building process.

C. Algorithm for Both Certain And Uncertain Data

Input: The training dataset D; the set of candidate attributes

att-list

Output: An uncertain decision tree

Begin

1: create a node N;

2: if (D are all of the same class, C) then

3: return N as a leaf node labeled with the class C;

4: else if (attribute-list is empty) then

5: return N as a leaf node labeled with the highest weight class

in D;

6: end if;

7: select a test-attribute with the highest probabilistic

information gain ratio to label node N;

8: if (test-attribute is numeric or uncertain numeric or

categorical data) then

9: binary split the data from the selected position y;

10: for (each instance Rj) do

11: if (test-attribute ≤y) then

12: put it into Dl with weight Rj .w;

13: else if (test-attribute > y) then

14: put it into Dr with weight Rj .w;

15: else

16: put it into Dl with weight Rj .w *∫
y

x1f(x)dx;

17: put it into Dr with weight Rj .w *∫
x2

yf(x)dx;

18: end if;

19: end for;

20: else

21: for (each value ai(i = 1, . . . , n) of the attribute) do

22: grow a branch Di for it;

23: end for;

24: for (each instance Rj) do

25: if (test-attribute is uncertain) then

26: put it into Di with Rj .ai.w*Rj .w weight;

27: else

28: put it into a certain Di with weight Rj .w;

29: end if

30: end for;

31: end if;

32: for each Di do

33: attach the node returned by DTU(Di, att-list);

34: end for;

End

 VI. DISS CUSSIONS

a) Uncetainity model

 In our discussion, uncertainty models of attributes have been

assumed known by some external means. In practice, finding a

good model is an application-dependent endeavor.

For example, manufacturers of some measuring instruments

do specify in instruction manuals the error of the devices,

which can be used as a source of information for modeling

error distributions. In some other cases, repeated

measurements can be taken and the resulting histogram can be

used to approximate the pdf .In the case of random noise, for

Krishna Mohan, Surekha Alokam,

MHM Krishna Prasad

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1401-1405

1404 | P a g e

example, one could fit a Gaussian distribution5 using the

sample mean and variance, thanks to the Central Limit

Theorem. During the search for datasets appropriate for our

experiments, we have hit a big obstacle: There are few

datasets with complete uncertainty information. Although

many datasets with numerical attributes have been collected

via repeated measurements, very often the raw data has

already been processed and replaced by aggregate values,
such as the mean. The pdf information is thus not available to

us. One example

is the ―Breast Cancer‖ dataset (see Table II) from the UCI

repository. This dataset actually contains 10 uncertain

numerical features collected over an unspecified number of

repeated measurements. However, when the dataset is

deposited into the repository, each of these 10 features is

replaced by 3 attribute values, giving the mean, the standard

score and the mean of the three largest measured values. With

these 3 aggregate values, we are unable to recover the

distribution of each feature. Even modeling a Gaussian

distribution is impossible. These 3 aggregate values are

insufficient for us to estimate the variance. Had the people

preparing this dataset provided the raw measured values, we

would be able to model the pdf’s from these values directly,

instead of injecting synthetic uncertainty and repeating this for

different parameter values for w. Now that we have

established in this work that using uncertainty information

modeled by pdf’s can help us construct more accurate

classifiers, it is highly advisable that data collectors preserve

and provide complete raw data, instead of a few aggregate

values, given that storage is nowadays very affordable.

b) Handling Categorical Attributes

We have been focusing on processing uncertain numerical

attributes in this paper. How about uncertain categorical

attributes? Like their numerical counterparts, uncertainty can

arise in categorical attributes due to ambiguities, data

staleness, and repeated measurements. For example, to cluster

users based on access logs of HTTP proxy servers using

(besides other attributes such as age) the top-level domain

names (e.g. ―.com‖, ―.edu‖, ―.org‖, ―.jp‖, ―.de‖, ―.ca‖) as an

attribute, we obtain repeated ―measurements‖ of this attribute

from the multiple log entries generated by each user. The

multiple values collected from these entries form a discrete

distribution, which naturally describes the uncertainty

embedded in this categorical attribute. The colour of a traffic

light signal, which is green at the time of recording, could

have changed to yellow or even red in 5 seconds, with

probabilities following the programmed pattern of the signal.

This is an example of uncertainty arising from data staleness.

Colours of flowers recorded in a survey may divide human-

visible colours into a number of categories, which may

overlap with one another. Such ambiguities could be recorded

as a distribution, e.g. 80% yellow and 20% pink. In all these

cases, using a distribution to record the possible values (with

corresponding probabilities) is a richer representation than

merely recording the most likely value.

For a tuple ti with uncertain categorical attribute Aj , the value

uncertainty can be modeled by a discrete probability

distribution function fi,j :dom(Aj) [0,1] satisfying Σxєdom(Aj)

fi,j(x) = 1. This is analogous to the case of uncertain numerical

attribute. An internal node n in the decision tree corresponding

to a categorical attribute Aj is not associated with a split point,

though. Rather, n has many child nodes, each corresponding to

a distinct value in dom(Aj). The test to perform at node n is to

check the value of Aj , in the test tuple, and the action taken is

to follow the branch to the child node corresponding to that

attribute value.

 To build a decision tree on uncertain data with a

combination of numerical and categorical attributes, the same

approach as described before can be followed: The tree is built

recursively in a top-down manner, starting from the root. At

each node, all possible attributes (numerical or categorical) are

considered. For each attribute, the entropy of the split is

calculated and the attribute giving the highest information gain

is selected. The node is assigned that attribute (and split point,

if it is a numerical attribute) and the tuples are (fractionally)

propagated to the child nodes. Each child node is then

processed recursively.

 To evaluate the entropy of a categorical attribute Aj, we

(fractionally) split the tuples in question into a set of buckets

{Bv/v єdom(Aj)}. Tuple tx is copied into Bv as a new tuple ty

with weight wy = fx,j(v) if and only if wy > 0. The pdf’sof ty

are inherited from tx, except for attribute Aj , which is set to

fy,j(v) = 1 and fy,j(w) = 0 for all w≠v.The entropy for the split

on Aj is calculated using all the buckets. As a heuristic, a

categorical attribute that has already been chosen for splitting

in an ancestor node of the tree need not be reconsidered,

because it will not give any information gain if the tuples in

question are split on that categorical attribute again.

VII . Pruning Algorithm
 Although UDT can build a more accurate decision tree, it

is not as efficient as AVG. As we have explained, to determine

the best attribute and split point for a node, UDT has to

examine k(ms -1) split points, where k = number of attributes,

c) Pruning by bounding

 To handle heterogeneous intervals, we first compute the

entropy H(q,Aj) for all end-points q є Qj. Let Hj
*
 be the

minimum value. Next, for each heterogeneous interval (a, b],

we compute a lower bound, Lj, of H(z,Aj) over all z є (a, b]. If

Lj ≥ Hj
*
, then no split points z є (a, b] can give an entropy

smaller than Hj
*
and thus the whole interval can be pruned.

This is the basis of our Local Pruning algorithm UDT-LP.A

simple but effective improvement on UDT-LP is to use a

global (across all attributes Aj) threshold H
*
 =min1≤j≤k Hj

*
for

pruning. This gives UDT-GP.

Krishna Mohan, Surekha Alokam,

MHM Krishna Prasad

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1401-1405

1405 | P a g e

d) End-point sampling

 We have empirically found that UDT-GP is very effective

in pruning intervals, reducing entropy calculation down to

only 2.7% of that of UDT. What remains is that UDT-GP

spends most time on computing the entropy values of end-

points of intervals. As an improvement, we use only 10% of

the end-points to derive a pruning threshold. This threshold is

slightly less effective, but saves a lot of entropy calculations

for the end-points. Using these pruning techniques, we have 2

algorithms.

V . Experiments On Efficiency

The algorithms described above have been implemented in

Java using JDK 1.6 and a series of experiments[1] were

performed on a PC with an Intel Core 2 Duo 2.66GHz CPU.

The data sets used are

 Table II

SELECTED DATA SETS FROM THE UCI MACHINE

LEARNING REPOSITORY

a) Pruning Effectiveness

Figure shows that the pruning algorithms are very effective.

They reduce the amount of entropy calculations—which

dominate the execution time—tremendously, with UDT-ES

reaching a >99% reduction ratio.

b) Efficiency

Figure shows that our algorithms are highly efficient, even

though they are not as fast as AVG. Please be reminded that

AVG generally builds less accurate classifiers. The execution

time of AVG is shown in the figure for reference only.

 Fig.3. Execution time

 Fig.4.Pruning effectiveness

 VI. Conclusion
 We have extended the model of decision-tree

classification and tree-construction algorithms to

accommodate data tuples having numerical attributes with

value uncertainty described by arbitrary pdf’s. Experiments

show that exploiting data uncertainty leads to decision trees

with remarkably higher accuracies. Performance is an issue,

though, because of the increased amount of information to be

processed. We have invented a series of highly effective

pruning techniques to improve tree construction efficiency.

Pruning by bounding and end-point sampling is novel pruning

techniques. Although our novel techniques are primarily

designed to handle uncertain data, they are also useful for

building decision trees using classical algorithms when there

are tremendous amounts of data tuples and also as a future

analysis we can handle uncertainty that is caused by

categorical data by using these Decision tree algorithms.

0.1

1

10

100

1000

japanese
vowel

satellite breast
cancer

AVG

UDT

1

10

100

1000

10000

japanesevowel segment

AVG

UDT

Krishna Mohan, Surekha Alokam,

MHM Krishna Prasad

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1401-1405

1406 | P a g e

VII. References

[1] R. Agrawal, T. Imielinski, and A. N. Swami,―Database

mining: A performance perspective,‖ IEEE Trans.

Knowl. Data Eng., vol. 5, no. 6, pp. 914–925, 1993.

[2] J. R. Quinlan, ―Induction of decision trees,‖ Machine

Learning, vol. 1,no. 1, pp. 81–106, 1986.

[3] C4.5: Programs for Machine Learning. Morgan

Kaufmann,1993,ISBN 1-55860-238-0.

[4] L.Breiman,J.H. Friedman, R. A. Olshen, andC. J .

Stone , Classification and regression Trees.

Wadsworth,1984.

[5] Decision Trees for Uncertain Data. Smith

Tsang†, Ben Kao†, Kevin Y. Yip‡, Wai- Shing Ho†,

Sau Dan Lee†. †Department of Computer Science.

2011.

[6] R.Cheng, D. V. Kalashnikov, and S.

Prabhakar,‖Querying imprecise data in moving object

environments,‖ IEEE Trans. Knowl. Data Eng.,vol. 16,

no. 9, pp. 1112– 1127, 2004

[7] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau,

and K. Y. Yip, ―Efficient clustering of uncertain data,‖

in ICDM. Hong Kong, China:IEEE Computer Society,

18–22 Dec. 2006, pp. 436–445.

[8] S. D. Lee, B. Kao, and R. Cheng, ―Reducing UK-means

to K-means,‖ in The 1st Workshop on Data Mining of

Uncertain Data (DUNE), in conjunction with the 7th

IEEE International Conference on Data Mining

(ICDM), Omaha, NE, USA, 28 Oct. 2007.

[9] H.-P. Kriegel and M. Pfeifle, ―Density-based

clustering of uncertain data,‖ in KDD. Chicago,Illinois,

USA: ACM, 21–24 Aug. 2005, pp.672–677.

[10] C. K. Chui, B. Kao, and E. Hung, ―Mining frequent

itemsets from uncertain data,‖ in PAKDD, ser. Lecture

Notes in Computer Science, vol. 4426. Nanjing, China:

Springer, 22-25 May 2007, pp. 47–58.

[11] C. C. Aggarwal, ―On density based transforms for

uncertain data mining,‖ in ICDE. Istanbul, Turkey:

IEEE, 15-20 Apr. 2007, pp. 866–875.

[12] O. O. Lobo and M. Numao, ―Ordered estimation of

missing values,‖ in PAKDD, ser. Lecture Notes in

Computer Science, vol. 1574. Beijing,China: Springer,

26-28 Apr. 1999, pp. 499–503.

[13] L. Hawarah, A. Simonet, and M. Simonet, ―A

probabilistic approach to classify incomplete

objectsusing decision trees,‖ in DEXA, ser.Lecture

Notes in Computer Science, vol. 3180. Zaragoza,

Spain: Springer, 30 Aug.-3 Sep. 2004, pp. 549–558.

SUREKHA ALOKAM received her B.Tech in Information

& Technology and Engineering from Nalanda Institute Of

Engineering and TechnologyCollege, Andhra Pradesh, India,

in 2009. She is Pursuing M.Tech in Computer Science and

Engineering in JNT University, Kakinada, A.P, India during

2010-2012. Her research invites Data Mining and Knowledge

Discovery, Data Warehousing and Database System.

KRISHNAMOHAN ANKALA is working as an

ASSOCIATE PROFESSOR under The Department of

Computer Science in JNT University, Kakinada, Andhra

Pradesh, India.

MHM KRISHNA PRASD is working as an ASSOCIATE

PROFESSOR under The Department of Computer Science in

JNT University, Vijayanagaram, Andhra Pradesh, India

