
Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.980-986

980 | P a g e

 Software Testing Techniques and Strategies

Abhijit A. Sawant
1
, Pranit H. Bari

2
 and P. M. Chawan

3

 Department of Computer Technology, VJTI, University of Mumbai, INDIA

Abstract
This paper describes Software testing, need for software

testing, Software testing goals and principles. Further it

describe about different Software testing techniques and

different software testing strategies. Finally it describes

the difference between software testing and debugging.

Keywords— Debugging, Software Testing Goals,

Software Testing principles, Software Testing Techniques,

Software Testing strategies

I. INTRODUCTION
Software testing refers to process of evaluating the software

with intention to find out error in it. Software testing is a

technique aimed at evaluating an attribute or capability of a

program or product and determining that it meets its quality.

Software testing is also used to test the software for other

software quality factors like reliability, usability, integrity,

security, capability, efficiency, portability, maintainability,

compatibility etc.

For many years now we are still using the same testing

techniques .some of which is crafted method rather than good

engineering methods. Testing can be costly but not testing

software can be even more costly. Software testing aims at

achieving certain a goals and principles which are to be

followed.

1.1. Need for Software testing
Software development involves developing software against a

set of requirements. Software testing is needed to verify and

validate that the software that has been built has been built to

meet these specifications. If not we may probably loose our

client. So in order to make it sure, that we provide our client a

proper software solution, we go for testing [1]. Testing

ensures that what you get in the end is what you wanted to

build. We check out if there is any problem, any error in the

system, which can make software unusable by the client. This

helps in the prevention of errors in a system.

1.2. Goals for software testing
Goals are the output of the software process. Software testing

has following goals. [2]

1) Verification and validation

Testing can also be used for verifying that the product or the

software works as desired and validate whether the software

fulfills condition laid down

2) Priority Coverage

Testing should be performed in efficient and effective manner

within the budget and schedule limits.

3) Balanced

Testing process must balance the requirements, technical

limitation and user expectation.

4) Traceable

Documents should be prepared of both success and failures of

testing process. So no need to test same thing again.

5) Deterministic

We should know what we are doing, what we are targeting,

what will be the possible outcome.

1.3. Testing principles

Principle is the rule or method in action that has to be

followed. Different testing principles are as follows: [2]

1) Test a program to try to make it fail

Testing is the process of executing a program with the intent

of finding errors. We should expose failures to make testing

process more effective.

2) Start testing early

This helps in fixing enormous errors in early stages of

development, reduces the rework of finding the errors in the

initial stages.

3) Testing is context dependant

Testing should be appropriate and different for different

points of time.

4) Define Test Plan

Test Plan usually describes test scope, test objectives, test

strategy, test environment, deliverables of the test, risks and

mitigation, schedule, levels of testing to be applied, methods,

techniques and tools to be used. Test plan should efficiently

meet the needs of an organization and clients as well.

5) Design Effective Test cases

Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.980-986

981 | P a g e

 Test case must be specified in a way that is measurable so

that testing results are unambiguous.

6) Test for valid as well as invalid Conditions

 In addition to valid inputs, we should also test system for

invalid and unexpected inputs/conditions

7) Testing must be done by different persons at different

levels

Different purpose addressed at different level of testing so

different person should perform testing differently using

different testing techniques at different level.

8) End of Testing

Testing has to be stopped somewhere. The testing can be

stopped when risk is under some limit or if there is limitation.

II. SOFTWARE TESTING TECHNIQUES
In this Section the focus is mainly on the different software

testing Techniques.

Software Testing Techniques can be divided into two types:-

2.1. Manual testing (static testing)

It is a slow process and laborious where testing is done

statically .It is done in early phase of life cycle. It is also

called static testing. It is done by analyst, developer and

testing team.

Different Manual testing Techniques are as follows:-

A) walk through

B) Informal Review

C) Technical Review

D) Inspection

2.2. Automated Testing (Dynamic testing)

In this tester runs the script on the testing tool and testing is

done. Automated testing is also called dynamic testing.

Automated testing is further classified into four types

A) Correctness testing

B) Performance testing

C) Reliability testing

D) Security testing

Fig 1:-Further classification of Automated software Testing

2.2.1. Correctness Testing
Correctness is the minimum requirement of software.

Correctness testing will need some type of oracle, to tell the

right behaviour from the wrong one. The tester may or may

not know the inside details of the software module under test.

[3] Therefore either white box testing or black box testing can

be used.

Correctness testing has following three forms:-

1) White box testing

2) Black box testing

3) Grey box testing

Fig 2:- Different form of Correctness testing [3]

Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.980-986

982 | P a g e

1) White box testing

White box testing is highly effective in detecting and

resolving problems, because bugs can often be found before

they cause trouble.[5] White box testing is the process of

giving the input to the system and checking how the system

processes that input to generate the required output.White box

testing is also called white box analysis, clear box testing or

clear box analysis.[5] White box testing is applicable at

integration, unit and system levels of the software testing

process.[3] White box testing is considered as a security

testing method that can be used to validate whether code

implementation follows intended design, to validate

implemented security functionality, and to uncover

exploitable vulnerabilities.

Some Different types of white box testing techniques are as

follows:-

1) Basis Path Testing

2) Loop Testing

3) Control Structure Testing

Advantages of white box testing:-

1) All independent paths in a module will be exercised at

least once.

2) All logical decisions will be exercised.

3) All loops at their boundaries will be executed.

4) Internal data structures will be exercised to maintain their

validity.

5) Errors in hidden codes are revealed.

6) Approximate the partitioning done by execution

equivalence.

7) Developer carefully gives reason about implementation.

Disadvantages of white box testing:-

1) Missed out the cases omitted in the code.

2) As knowledge of code and internal structure is a

prerequisite, a skilled tester is needed to carry out this

type of testing, which increases the cost.

3) And it is nearly impossible to look into every bit of code

to find out hidden errors, which may create problems,

resulting in failure of the application.

2) Black box testing

Black box testing is testing software based on output

requirements and without any knowledge of the internal

structure or coding in the program.[5]

Basically Black box testing is an integral part of „Correctness

testing‟ but its ideas are not limited to correctness testing

only. The goal is to test how well the component conforms to

the published requirement for the component. Black box

testing have little or no regard to the internal logical structure

of the system, it only examines the fundamental aspect of the

system. It makes sure that input is properly accepted and

output is correctly produced. [3]

Some Different types of Black box testing techniques are as

follows:-

1) Equivalent Partitioning

2) Boundary value Analysis

3) Cause-Effect Graphing Techniques

4) Comparison Testing

5) Fuzz Testing

6) Model-based testing

Advantages of Black box testing:-

1) The number of test cases are reduced to achieve

reasonable testing

2) The test cases can show presence or absence of classes of

errors.

3) Black box tester has no “bond” with the code.

4) Programmer and tester both are independent of each

other.

5) More effective on larger units of code than clear box

testing.

Disadvantages of Black box testing:-

1) Test cases are hard to design without clear specifications.

2) Only small numbers of possible input can actually be

tested.

3) Some parts of the back end are not tested at all.

4) Chances of having unidentified paths during this testing

5) Chances of having repetition of tests that are already

done by programmer

3) Grey box testing

The Graybox Testing Methodology is a software testing

method used to test software applications. The methodology

is platform and language independent. The current

implementation of the Graybox methodology is heavily

dependent on the use of a host platform debugger to execute

and validate the software under test. Recent studies have

confirmed that the Graybox method can be applied in real

time using software executing on the target platform.

Grey box testing techniques combined the testing

methodology of white box and black box. Grey box testing

technique is used for testing a piece of software against its

specifications but using some knowledge of its internal

working as well. The understanding of internals of the

program in grey box testing is more than black box testing,

but less than clear box testing. [3]

The Graybox methodology is a ten step process for testing

computer software.

Ten Step Graybox Methodology

1) Identify Inputs

2) Identify Outputs

3) Identify Major Paths

4) Identify Subfunction (SF)X

5) Develop Inputs for SF X

6) Develop Outputs for SF X

Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.980-986

983 | P a g e

7) Execute Test Case for SF X

8) Verify Correct Result for SF X

9) Repeat Steps 4:8 for other SF

10) Repeat Steps 7&8 for Regression

The Graybox methodology utilizes automated software

testing tools to facilitate the generation of test unique

software. Module drivers and stubs are created by the toolset

to relieve the software test engineer from having to manually

generate this code. The toolset also verifies code coverage by

instrumenting the test code. “Instrumentation tools help with

the insertion of instrumentation code without incurring the

bugs that would occur from manual instrumentation”.

By operating in a debugger or target emulator, the Graybox

toolset controlled the operation of the test software. The

Graybox methodology has moved out of a debugger into the

real world and into real-time. The methodology can be

applied in real-time by modifying the basic premise that

inputs can be sent to the test software via normal system

messages and outputs are then verified using the system

output messages.

2.2.2. PERFORMANCE TESTING

Performance Testing involve all the phases as the mainstream

testing life cycle as an independent discipline which involve

strategy such as plan, design, execution, analysis and

reporting. [3]

Not all software has specification on performance explicitly.

But every system will have implicit performance

requirements.

Performance has always been a great concern and driving

force of computer evolution. The goals of performance

testing can be performance bottleneck identification,

performance comparison and evaluation.

By performance testing we can measure the characteristics of

performance of any applications. One of the most important

objectives of performance testing is to maintain a low latency

of a website, high throughput and low utilization. [3]

Performance testing has two forms:-

Load testing

Load testing is the process of subjecting a

computer, peripheral, server, network or application to a work

level approaching the limits of its specifications. Load testing

can be done under controlled lab conditions to compare the

capabilities of different systems or to accurately measure the

capabilities of a single system. In this we can check whether

the software can handle the load of many user or not.

Stress testing

Stress testing is a testing, which is conducted to evaluate a

system or component at or beyond the limits of its specified

requirements to determine the load under which it fails and

how. [3]

2.2.3. RELIABILITY TESTING

The purpose of reliability testing is to discover potential

problems with the design as early as possible and, ultimately,

provide confidence that the system meets its reliability

requirements. Reliability testing is related to many aspects of

software in which testing process is included; this testing

process is an effective sampling method to measure software

reliability. In system after software is developed reliability

testing techniques like analyze or fix techniques can be

carried out to check whether to use the software.

2.2.4. SECURITY TESTING

Software quality, reliability and security are tightly coupled.

Flaws in software can be exploited by intruders to opens

security holes.

Security testing makes sure that only the authorized personnel

can access the program and only the authorized personnel can

access the functions available to their security level. The

security testing is performed to check whether there is any

information leakage in the sense by encrypting the application

or using wide range of software‟s and hardware's and firewall

etc.

III. SOFTWARE TESTING STRATEGIES
A strategy for software Testing integrates software test case

design methods into a well planned Series of steps that result

in successful Construction of software that result in

successful construction of software. Software testing

Strategies gives the road map for testing. A software testing

Strategy should be flexible enough to promote a customized

testing approach at same time it must be right enough.

Strategy is generally developed by project managers, software

engineer and testing specialist.

There are four different software testing strategies.

1) Unit testing

2) Integration testing

3) Acceptance/Validation testing

4) System testing

3.1. Unit testing

Unit is the smallest module i.e. smallest collection of lines of

code which can be tested. Unit testing is just one of the levels

of testing which go together to make the big picture of testing

a system. IT complements integration and system level

testing. It should also complement code reviews and

walkthroughs.

Unit testing is generally seen as a white box test class. That is

it is biased to looking at and evaluating the code as

implemented. Rather than evaluating conformance to some

set of requirements.

Benefits of Unit Testing:-

1) Unit level testing is very cost effective.

2) It provides a much greater reliability improvement for

resources expanded than system level testing. In

Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.980-986

984 | P a g e

particular, it tends to reveal bugs which are otherwise

insidious and are often catastrophic like the strange

system crashes that occur in the field when something

unusual happens.

3) Be able to test parts of a project without waiting for the

other parts to be available,

4) Achieve parallelism in testing by being able to test and

fix problems simultaneously by many engineers,

5) Be able to detect and remove defects at a much less cost

compared to other later stages of testing,

6) Be able to take advantage of a number of formal testing

techniques available for unit testing,

7) Simplify debugging by limiting to a small unit the

possible code areas in which to search for bugs,

8) Be able to test internal conditions that are not easily

reached by external inputs in the larger integrated

systems

9) Be able to achieve a high level of structural coverage of

the code,

10) Avoid lengthy compile-build-debug cycles when

debugging difficult problems.

Unit testing techniques

A number of effective testing techniques are usable in unit

testing stage. The testing techniques may be broadly divided

into three types:

1. Functional Testing

2. Structural Testing

3. Heuristic or Intuitive Testing

3.2. Integration testing

Integration testing is a systematic technique for constructing

the program structure while at the same time conducting tests

to uncover errors associated with interfacing. The objective is

to take unit tested components and build a program structure

that has been dictated by design.

Different Integration testing Strategies are discussed below:-

1) Top down Integration testing

2) Bottom up Integration testing

Top down Integration

Top-down integration testing is an incremental approach to

construct program structure. Modules are integrated by

moving downward through the structure, beginning with the

main control module. Modules subordinate to the main

control module are incorporated into the structure in either a

depth-first or breadth-first manner. [4]

The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs

are substituted for all components directly subordinate to the

main control module.

2. Depending on the integration approach selected

subordinate stubs are replaced one at a time with actual

components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced

with the real component.

5. Regression testing may be conducted to ensure that new

errors have not been introduced.

It is not as relatively simple as it looks. In this logistic

problem can arise. Problem arises when testing low level

module which requires testing upper level. Stub replace low

level module at the beginning of top down testing. So no data

can flow in upward direction.

Bottom up Integration

Bottom-up integration testing, as its name implies, begins

construction and testing with atomic modules. Because

components are integrated from the bottom up, processing

required for components subordinate to a given level is

always available and the need for stubs is eliminated. [4]

A bottom-up integration strategy may be implemented with

the following steps:

1. Low-level components are combined into clusters that

perform a specific software subfunction.

2. A driver is written to coordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving

upward in the program structure.

3.3. Acceptance testing

Acceptance testing (also known as user acceptance testing) is

a type of testing carried out in order to verify if the product is

developed as per the standards and specified criteria and

meets all the requirements specified by customer. [4] This

type of testing is generally carried out by a user/customer

where the product is developed externally by another party.

Acceptance testing falls under black box testing methodology

where the user is not very much interested in internal

working/coding of the system, but evaluates the overall

functioning of the system and compares it with the

requirements specified by them. User acceptance testing is

considered to be one of the most important testing by user

before the system is finally delivered or handed over to the

end user.

Acceptance testing is also known as validation testing, final

testing, QA testing, factory acceptance testing and application

testing etc. And in software engineering, acceptance testing

may be carried out at two different levels; one at the system

provider level and another at the end user level.

Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.980-986

985 | P a g e

Types of Acceptance Testing

User Acceptance Testing
 User acceptance testing in software engineering is considered

to be an essential step before the system is finally accepted by

the end user. In general terms, user acceptance testing is a

process of testing the system before it is finally accepted by

user.

Alpha Testing & Beta Testing
Alpha testing is a type of acceptance testing carried out at

developer‟s site by users.[4] In this type of testing, the user

goes on testing the system and the outcome is noted and

observed by the developer simultaneously.

Beta testing is a type of testing done at user‟s site. The users

provide their feedback to the developer for the outcome of

testing. This type of testing is also known as field testing.

Feedback from users is used to improve the system/product

before it is released to other users/customers.

Operational Acceptance Testing
This type of testing is also known as operational

readiness/preparedness testing. It is a process of ensuring all

the required components (processes and procedures) of the

system are in place in order to allow user/tester to use it.

Contact and Regulation Acceptance Testing
In contract and regulation acceptance testing, the system is

tested against the specified criteria as mentioned in the

contract document and also tested to check if it meets/obeys

all the government and local authority regulations and laws

and also all the basic standards.

3.4. System testing

System testing of software or hardware is testing conducted

on a complete, integrated system to evaluate the system's

compliance with its specified requirements. System testing

falls within the scope of black box testing, and as such,

should require no knowledge of the inner design of the code

or logic System testing is actually a series of different tests

whose primary purpose is to fully exercise the computer-

based system. Although each test has a different purpose, all

work to verify that system elements have been properly

integrated and perform allocated functions.

Some of Different types of system testing are as follows:-

1. Recovery testing

2. Security testing

3. graphical user interface testing

4. Compatibility testing

Recovery Testing

Recovery testing is a system test that forces the software to

fail in a variety of ways and verifies that recovery is properly

performed. If recovery is automatic, re-initialization, check

pointing mechanisms, data recovery, and restart are evaluated

for correctness. If recovery requires human intervention, the

mean-time-to-repair is evaluated to determine whether it is

within acceptable limits.

Security testing

Security testing attempts to verify that protection mechanisms

built into a system will, in fact, protect it from improper

penetration.

During security testing, the tester plays the role(s) of the

individual who desires to penetrate the system. Anything

goes! The tester may attempt to acquire passwords through

external clerical means; may attack the system with custom

software designed to breakdown any defenses that have been

constructed; may overwhelm the system, thereby denying

service to others; may purposely cause system errors, hoping

to penetrate during recovery; may browse through insecure

data, hoping to find the key to system entry.

Graphical user interface testing

Graphical user interface testing is the process of testing a

product's graphical user interface to ensure it meets its written

specifications. This is normally done through the use of a

variety of test cases.

Compatibility testing

Compatibility testing, part of software non-functional tests, is

testing conducted on the application to evaluate the

application's compatibility with the computing environment.

IV. DISCUSSION

In this section difference between testing and debugging is

shown.

Software testing is a process that can be systematically

planned and specified. Test case design can be conducted, a

strategy can be defined, and results can be evaluated against

prescribed expectations.

Debugging occurs as a consequence of successful testing.

That is, when a test case uncovers an error, debugging is the

process that results in the removal of the error.

The purpose of debugging is to locate and fix the offending

code responsible for a symptom violating a known

specification. Debugging typically happens during three

activities in software development, and the level of

granularity of the analysis required for locating the defect

differs in these three.[1]

The first is during the coding process, when the programmer

translates the design into an executable code. During this

process the errors made by the programmer in writing the

code can lead to defects that need to be quickly detected and

fixed before the code goes to the next stages of development.

Most often, the developer also performs unit testing to expose

any defects at the module or component level.[1]

Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.980-986

986 | P a g e

The second place for debugging is during the later stages of

testing, involving multiple components or a complete system,

when unexpected behavior such as wrong return codes or

abnormal program termination may be found. A certain

amount of debugging of the test execution is necessary to

conclude that the program under test is the cause of the

unexpected behavior.[1]

V. CONCLUSIONS
This paper on Software testing describes in detail about

software testing, need of software testing, Software testing

goals and principles. . Software testing is often less formal

and rigorous than it should, and a main reason for that is

because we have struggled to define best practices,

methodologies, principles, standards for optimal software

testing. To perform testing effectively and efficiently,

everyone involved with testing should be familiar with basic

software testing goals, principles, limitations and concepts.

 We further explains different Software testing techniques

such as Correctness testing, Performance testing, Reliability

testing, Security testing. Further we have discussed the basic

principles of black box testing, white box testing and gray

box testing. We have surveyed some of the strategies

supporting these paradigms, and have discussed their pros

and cons. We also describes about different software testing

strategies such as unit testing, Integration testing, acceptance

testing and system testing.

Finally there is comparison between debugging and

testing. Testing is more than just debugging .Testing is not

only used to locate defects and correct them it is also used in

validation, verification process and measurement.

REFERENCES
[1] Sahil Batra and Dr. Rahul Rishi,”IMPROVING

QUALITY USING TESTING STRATEGIES,”

Journal of Gobal Research in Computer Science,

Volume 2,No.6,June 2011.

[2] S.M.K Quadri and Sheikh Umar Farooq,”Software

Testing-Goals,Principles and Limitations,”

International Journal of Computer Applications,

Volume 6-No.9,September 2010.

[3] Mohd. Ehmer Khan,”Different Forms of Software

Testing Techniques for Finding Errors,”IJCSI

International Journal of Computer Science

Issues,Vol. 7, Issue 3, No 1, May 2010.

[4] Ajay Jangra, Gurbaj Singh, Jasbir Singh and Rajesh

Verma,”EXPLORING TESTING

STRATEGIES,”International Journal of

Information Technology and Knowledge

Management, Volume 4, NO.1,January-June 2011.

[5] Jovanovic and Irena,”Software Testing Methods

and Techniques,” May 26,2008.

[6] ger S. Pressman, “Software engineering: A

practitioner‟s Approach,” fifth edition, 2001.

