
P.Chaya Raju, P. Raju
,
M.Murali Krishna / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.893-898

893 | P a g e

 Multi-channel UART Controller with Programmable Modes

P.Chaya Raju
1
 P. Raju

2
 M.Murali Krishna

3

Department of Electronic and Communication Engineering

GIT, GITAM University,

Visakhapatnam, India

Abstract: In the recent years the development in

communication systems requires the data

transmission to be performed faster and faster. To

meet this demand the paper presents a high speed

multi channel UART controller based on FIFO

(First In First Out) technique . An Asynchronous

FIFO is designed with dual port ram array and with

read and right pointers. The structure of controller

is designed with UART (Universal Asynchronous

Receiver Transmitter) and FIFO circuit design, the

structure of the controller is scalable and

reconfigurable design. This controller reduces the

synchronization error between the sub systems in a

system with other sub systems. Mainly the

controller is used to operate or implement the

communication system when master equipment and

slave equipment are set at different baud rate.

Keywords: FIFO, UART, PROGRAMMABLE

MODES.

1. INTRODUCTION
 Now-a-days, Micro controllers and digital

signal processors (DSPs), in complex control

algorithms can be easily implemented to attain the

desired system performance. But in proposed control

systems, it is difficult to attain the exact result for

various factors such as which affect the control of the

system, it means control algorithms are capable of

controlling and implementing equipment and states of

control circumstance [1]. Except those factors,

communication parameters of control systems include

Bit Error Rate, Baud Rate and synchronization between

sub-systems also causing great effect. In order to

improve precision of control system and make better

use of modern control algorithms, we should pay much

more attention on communication methods in control

systems.

 In this paper we propose a Multi-UART controller

that will use a serial communication circuit UART.

Universal Asynchronous Receiver Transmitter (UART)

circuits are popular and widely used in several systems.

 A universal asynchronous receive/transmit (UART) is

an integrated circuit which plays the most important

role in serial communication. It handles the conversion

between serial and parallel data. Serial communication

reduces the distortion of a signal, therefore makes data

transfer between two systems separated in great

distance possible [2].

 we design a multi-channel UART controller based

on FIFO techniques. It can receive data with a UART

block at a certain Baud Rate and transmit data to sub-

equipment with a UART block at the same Baud Rate

or at other kind of Baud Rate which is different from

the receiving Baud Rate. And it also can be used to

reduce time delay between sub controllers.

 In this paper, using FIFO technique, Baud

Rate generator is designed to implement

communications within equipments at different Baud

Rates. FIFOs are usually used for clock domains

crossing to safely pass data from one clock domain to

another asynchronous clock domain. Using a FIFO to

pass data from one clock domain to another clock

domain requires multi-asynchronous clock design

techniques. There are different ways to design a FIFO

right. This paper details one method that is used to

design, synthesize and analyze a safe FIFO between

two different clock domains using Gray code. FIFO is

the most important part of these systems and it works as

a bridge between different devices. So the features and

capabilities of the asynchronous FIFO determine the

features of our controller. FIFO can be used to complete

communication in parallel or serial port.

II IMPLEMENTATION OF

ASYNCHRONOUS FIFO’S
 A. Introduction to asynchronous FIFO

 An asynchronous FIFO refers to a FIFO design

where data values are written to a FIFO buffer from one

clock domain and the data value are read from the same

FIFO buffer from another clock domain, which are

asynchronous to each other. Asynchronous FIFOs are

often used to quickly and safely pass data from one

clock domain to another asynchronous clock domain. In

asynchronous clock circuit, periods and phases of each

clock domain are completely independent so the

probability of data loss is always not zero. This paper

introduces a way of designing FIFO based on FPGAs

with high write/read speed and high reliability.

 Generally, a FIFO consists of a RAM Array block,

a Status block, a writer pointer (WR_ptr) and a read

P.Chaya Raju, P. Raju
,
M.Murali Krishna / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.893-898

894 | P a g e

point (RD_ptr) and its structure. A RAM array with

separate read and write ports is used to stored data. The

writer pointer points to the location that will be written

next, and the read pointer points to the location that will

be read currently. A write operation increments the

writer pointer and a read operation increments the read

pointer. On reset, both pointers are reset to zero, the

FIFO is empty. The writer pointer happens to be the

next FIFO location to be written and the reader pointer

is pointing to invalid data. The responsibility of the

status block is to generate the “Empty” and “Full”

signals to the FIFO. If the “Full” is active then the FIFO

cannot accommodate more data and if the “Empty” is

active then the FIFO cannot provide more data to

readout. When writing data into the FIFO “wclk” will

be used as the clock domain and when reading data out

of the FIFO “rclk” will be used as the clock domain.

These both clock domains are asynchronous.

 In designing of asynchronous FIFOs, two

difficult problems cannot be ignored. One is how to

judge FIFOs status according to the writer pointer and

read pointer. The other is how to design circuit to

synchronize asynchronous clock domains to avoid

Metastability.

B. Status of Empty and Full of FIFO

 Creating empty and full signals is the most important

part of designing a FIFO. No matter under what

circumstance, the read and write pointers cannot point

to the same address of the FIFO.

 So, the empty and full signals play very important

roles within FIFO that they block access to further read

or write respectively. The critical importance of this

blocking lies in the fact that pointer positions are the

only control that is over the FIFO, and write or read

operation changes the pointers. In order to exactly

know whether the FIFO is full or empty, we can set a

direction flag keeps track of what causes the pointers to

become equal to each other. The flag tells the status

circuit the direction in which the FIFO is currently

headed.

 The implementation of the direction flag is a little

complex because you have to set the threshold of

“going toward full” and “going toward empty”.

 The status block fundamentally performs operations

on the two pointers, and these run off two different

clock domains. This is what causes the real difficulty.

If you were to sample the read pointer with the write

pointer (or vice versa), you will potentially run into a

problem called metastability. Meta stability is the name

for the physical phenomenon that happens when an

event tries to sample another event. In a physical circuit

the metastability causes the output uncertainty either be

a logical 1 or a logical 0 or something between. In

physical systems, sampling an event by another event

yields unpredictable results.

 . To eliminate these kinds of problems caused by

metastability is a difficulty in designing a FIFO .

Fig.1.Internal block diagram of asynchronous FIFO.

 C. Solutions of Metastability

Metastability can cause unpredictable problems in a

FIFO, so in the designing stage we should do the best to

reduce the metastability. If asynchronous element is in

a system, metastability is unavoidable. There is

absolutely no way to eliminate metastability

completely, so what we do is calculate a “probability”

of error and express this in terms of time ie. MTBF

(Mean Time between Failures). MTBF is a statistical

measure of failure probability, and requires some much

more complex, empirical and experimental data to

arrive at. In a D flip-flop, when the input signal changes

instantaneously from 0 to 1 at time , the value of Q

is uncertain. This is metastability. In the FIFO, it needs

to sample the value of a counter with a clock that is

synchronous to the counter clock. Thus it will meet a

situation where the counter is changing from FFFF to

0000, and every single bit goes metastable. This means

that the counter would potentially read any value

between FFFF to 0000 and the FIFO does not work.

The most important things that must to be done are to

make sure that not all bits of the counter will change

simultaneously. In order to minimize the probability of

occurrence of such errors, we should make sure that

precisely one bit changes every time the counter

increments. So we need a counter that counts in the

Gray codes. Gray code is different form binary code

that is every next value differs from the previous in

only one bit position.

 In a FIFO, converts the Gray code to Binary code,

increments it and convert it back to the Gray code and

store it. The Gray code counter assumes that the outputs

of registers bits are the Gray code value. The Gray code

outputs are then passed to the Gray to binary converter

P.Chaya Raju, P. Raju
,
M.Murali Krishna / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.893-898

895 | P a g e

which is passed to a binary adder to generate the next

binary value which is passed to the binary to Gray

converter that generates the next Gray code value stored

in register.

 The first fact to remember about a Gray code is that

the code distance between any two adjacent words is

just 1(only one bit can change from one Gray count to

the next). The second fact to remember about a Gray

code counter is that most useful Gray code counters

must have power-of-2 counts in the sequence.

Fig.2.Gray Counter Architecture

III DESCRIPTION OF A MULTI-CHANNEL

UART CONTROLLER
 A. Hardware structure

 In the multi-channel controller, there are different

blocks including four UART’s, two asynchronous

FIFOs, one Baud Rate Generator, a register block and

with a controller . Each block has different function in

the controller.

 The first part is UART circuit block and its

structure. It consists of three parts Receive Circuit,

Transmit Circuit and Control/Status Registers. The

Transmit Circuit consists of a Transmit Buffer and a

Shift Register. Transmit Buffer loads data being

transmitted from local CPU. And Shift Register accepts

data from the Transmit Buffer and send it to the TXD

pin one by one bit. The Receive Circuit consists of a

Receive Shift Register and a Receive Buffer. The

Receive Shift Register receives data from RXD one by

one bit. The Control Register a special function register

is used to control the UART and indicate status of it.

According to each bit’s value the UART will choose

different kind of communication method and the UART

knows what to do to receive or transmit data.

 . When writing data into FIFOs and reading data out

of FIFOs we could set different clock domains

according to the MCUs’ Baud Rate. So it can be used

to implement communications between MCUs at

different Baud Rate.

 The controller also has a block of Baud Rate

Generator to engender different Baud Rates to content

requirements for different kind of systems. This block

is constituted by timers (32/16 bits timers), frequency

dividers and a Baud Rate setting register.

Fig.3. Structure of MULTI CHANNEL UART

 A controller can also be used to complete

communication between high speed device and low

speed device.

Fig.4. Structure of the controller

IV.PROGRAMMABLE MODES OF

CONTROLLER

Fig 5: states of controller to operate the modes.

 If CS is low the controller will enter the IDLE

state. The individual clocks of UART1, UART2,

UART3 and UART4 are disabled in the IDLE state.

P.Chaya Raju, P. Raju
,
M.Murali Krishna / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.893-898

896 | P a g e

 If CS is high then the controller will enter the RUN

state. The Multi- UART controller can operate normally

in the RUN state.The individual clocks of each of the

UART are enabled in the RUN state.

Fig. 6 : State Diagram of Controller in RUN State .

 In the RUN state the controller can operate in three

different modes. The three different modes are—the

normal mode, the hub mode and the bridge mode.

Mode_sel is an input signal which determines the mode

in which the controller is working.

 If the input to the Mode_sel[2:1] is “00” then the

Normal Mode is activated and the Normal_mode which

is an output signal is made high. Once the controller is

in the normal mode, the controller sets the Normal

Mode register in the Status Register block. All other

mode registers are reset. In the normal mode UART1

will receive data and UART3 will transmit that data.

Similarly in the normal mode UART2 will receive data

and UART4 will transmit that data.UART1 and

UART2 can independently receive data at different

baud rates.UART3 and UART4 can independently

transmit data at different baud rates.

 If the input to the Mode_sel[2:1] is “01”in binary or

then the Hub Mode is activated and the output

Hub_mode is made high while Normal_mode and

Bridge_mode outputs go low. Once the controller is in

the Hub Mode the controller sets the Hub Mode

register in the Status block. The Normal Mode and

Bridge Mode registers are reset. In the Hub Mode

UART1 will receive data while UART2, UART3 and

UART4 transmit that data.

If the input to the Mode_sel[2:1] is “11” in binary then

the Bridge Mode is activated

and the output Bridge_mode is made high while

Normal_mode and Hub_mode outputs go low. In

theBridge Mode, the controller sets the Bridge Mode

register in the Status Register block. The two other

mode registers are reset. In the Bridge Mode, UART1

will receive data which is transmitted by UART2 at

different baud rates. Simultaneously in the Bridge

Mode

UART3 will receive data and UART4 will transmit that

data at different baud rates.

 B. Software structure

You can use software codes in Verilog HDL to design

FPGAs hardware architecture it is easy to create and

adjust to satisfy requirements of applications. Here are

one UART used to communicate with PC or other main

MCU and there are also four other UARTs used to

communication with sub MCUs. Each channel has two

FIFOs, one for receiving data and the other for

transmitting data. Each FIFO’s depth is 64 Bytes. when

FIFO is full you cannot write any more byte into the

FIFO. At this time, the Status Detector will set CS high

to indicate that the FIFO is full and stop writing to the

FIFO. When FIFO is empty you cannot read from it any

more. Then the Status Detector will set Empty high to

indicate the status of FIFO and stop reading from it.

When FIFO is not full or empty it will be written or

read data according the control order. After finishing all

write or read operation it will stop until next access is

coming.

IV SIMULATION AND VERIFICATION

 To verify design of the controller a test bench is

written to make verification in ISE simulator The

software structure involved in the design of the

following blocks- UART block, FIFO blocks, Status

Register Block, Baud Generator block. The controller

which interacts with all of the above was designed and

its design was discussed earlier.

 Some components like UART and FIFO blocks are

used more than once. A single UART was designed and

verified. Then UART component was instantiated four

times to obtain four independent UARTs.

 Similarly once FIFO block was designed and

verified, it was instantiated twice to obtain FIFO1 and

FIFO2.Codes in Verilog HDL were used to design the

architecture of the Multi UART controller.

Fig 7: baud rate generator output.

P.Chaya Raju, P. Raju
,
M.Murali Krishna / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.893-898

897 | P a g e

Fig 8: controller output.

Fig 9: Transmitting sequence.

Fig 10: receiver response

V CONCLUSIONS
This paper introduces a method to design a synchronous

FIFO and using Asynchronous FIFO technique

implements a multi-channel UART controller based on

SRAM with high speed and high reliability. . The

controller is reconfigurable and scalable. The controller

can be used to implement communications in complex

system with different Baud Rates of sub-controllers.

And it also can be used to reduce time delays between

sub-controllers of a complex control system to improve

the synchronization of each sub-controller

VI REFERENCES
[1] [S. E. Lyshevski, “Control Systems Theory with

Engineering Applications”, Birkhauser Boston,

2001.

[2] L. K. Hu and Q.CH. Wang, “UART-based Reliable

Communication and performance Analysis”,

Computer Engineering, Vol 32 No. 10, May 2006,

pp15-21.

[3] F.S. Pan, F. ZHAO, J. Xi and Y. Luo, “Implement

of Parallel Signal Processing Syttem Based on

FPGA and Multi-DSP”, Computer Engineering

Vol 32, No. 23, Dec 2006, pp247-249.

[4] X. D. Wu and B. Dai, “Design of Interface between

High Speed A/D and DSP Based on FIFO”, Journal

of Beijing Institute of Petrochemical Technology

Vol 14 No.12, June 2006, pp26-29.

P.Chaya Raju, P. Raju
,
M.Murali Krishna / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.893-898

898 | P a g e

[5] C. E. Cummings, “Simulation and Synthesis

Techniques for Asynchronous FIFO Design”,

SNUG San Jose 2002.

[6] C. E. Cummings, “Simulation and Synthesis

Techniques for Asynchronous FIFO Design with

Asynchronous Pointer Comparisons”, SNUG San

Jose 2002.

[7] Vijay A. Nebhrajan, “Asynchronous FIFO

Architectures”, www.eebyte.com

[8] X., Yang, “Industrial Data Communication and

Control Networks”, Beijing: TUP, 2003.6.

[9] B. Zeidman, “Designing with FPGAs & CPLDs”,

CMP Books, 2002.

VII AUTHORS
P.Chaya Raju received

his B.Tech degree from JNTU

Kakinada in the year 2010 and

presently pursuing M.Tech in

GITAM University. His research

activities are related to Low power

VLSI Design.

P.Raju received his B.Tech

degree from The Nagarjuna

University in the year 2003

and received M.Tech degree

in the year 2008 from Andhra

University. He is a working in

GITAM Institute of Technology, GITAM

University, Visakhapatnam as an Assistant

Professor. His research activities are related to

Low Power VLSI Design.

M.Murali Krishna received

his M.Tech degree in the

year 2007 from Guru

Gobind Singh Indraprastha

University, Delhi. He is a

working in GITAM Institute

of Technology, GITAM University,

Visakhapatnam as an Assistant Professor. His

research activities are related to Low Power

VLSI Design.

