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Abstract 
Theoretical available values of thermal conductivity are commonly different from the experimentally obtained 

values. In the present work, a thermodynamic system has been considered and variations in temperature in different 

elements were analyzed and corresponding thermal conductivities were calculated. These values were compared and 

the corrected values were justified on the basis of a mathematical model made by introducing semi-empirical 

corrections.  The theoretical value of the thermal conductivity of an isolated system (KT) and the corresponding 

corrected value were found in agreement with each other. 
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1. Introduction 
Heat transfer is a common phenomenon in metals and various other engineering materials. In today’s world, various 

thermodynamical systems are explained and analysed on the basis of observations. Observations are taken and they 

are recorded. On these records, phenomenon of heat transfer is analysed. There is no sure shot theoretical and 

mathematical model to those systems i.e. there is no theoretical basis for this phenomenon. The present paper 

discusses an experiment and procedure of analysis. The experiment deals with the ancient problem of thermal 

conduction through a metallic cylinder whose ends sit at temperatures T1 and T2 where T1>T2. The metallic 

cylinder is of length L and diameter D. Heat conduction occurs from face 1 to face 2. Assuming an isolated system, 

the heat exchange can be written as [1, 2]: 

 

Q / t = -K (A/L)……………… (1) 

                           

Where Q/t is the heat transfer per unit time, K is the thermal conductivity of the material, A is the surface area, L 

is the total length of the cylinder and is the temperature difference between the two faces. In this work, an 

experiment is reviewed that can be used to determine K for different metallic materials where the theoretical model 

expressed by eqn 1 represents only a first approximation to the reality. The main difference b/w theory and 

experimental facts is explored in this work in a scientific way. 

2. Experimental Procedure 

The experimental set up [3] consists of a metallic cylinder (diameter D, and length L) that is used to connect two 

cups. For all the experiments presented in this work it was always adopted D = 15.85 and L = 61.00 mm. Cup 1 is 

made of aluminum and it is filled with water (M1 = 300 ml) at room temperature. The water temperature inside Cup 

1 is going to be referred as T1, and it is monitored by the use of a thermometer. Cup 2 is made of Teflon, which is 

filled of ice and water and it weighs M 2. It has also a Teflon cover with a hole for the introduction of a thermometer 

that is used to monitor the temperature (T2) of a fixed amount of water (M2) inside Cup 2.  A stirrer is used for 

better temperature homogenization inside cup 2 

3. Results and Discussions 

3.1. The simplest model 

We observed that for the case of a copper, the cylinder takes 800 sec for heating of T2 from 0
o
C to 36

o
C. For the 

aluminium this figure is 1350 sec and for brass, it is 1840 sec. In order to determine K using the theoretical model 

predicted by eqn 1, Q can be calculated using the approximations that all heat that is transferred from cup1 to 

cup2. According to that simple model, for each variation of T2 by one degree, Q can be written as in eqn 2.  

Q = M2 CW  TW      ………… (2) 
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Here CW is the specific heat of water (equal to 1 cal/g 
o
C) and W  is the increase in the temperature equal to 1

o
C. 

For each material, K can be determined by substituting eqn 2 in eqn 1. We name this model as model 1, and thus K 

is denoted as K1 and written as in eqn 3.  

K1 = (M2 CW TW L) / (A T t)  …………… (3)

Note that in equation 3 most of the parameters are constants, besides T and t (assuming TW as 1
o
C). Figure 2(a) 

shows the results of K1 as a function of T2 for copper (squares), aluminum (circles) and brass (triangles) 

respectively. Three different regions named A, B and C are illustrated in Fig. 2(a), and they are separated by the 

vertical dashed lines. Each of them will be considered separately next. The data for T2 < 5C were not shown in 

region A. They were excluded from the graph because region A represents a regions where the system in not in 

equilibrium yet (a mixture of water and ice exists inside cup2, that also presents a temperature gradient), thus K1 

values start from close to zero and reach the equilibrium value at about T2 equal to 5C. In this sense, region A is 

totally disregarded. Regions B and C are separated according to room temperature, that was about 27C. In fig 2(a), 

the variation of experimentally obtained thermal conductivity (K1) according to the simplest theoretical model 

described by eqns. 1 and 2 for three metallic cylinders made of copper (squares), aluminium (circles) and brass 

(triangles) is plotted as a function of the temperature (T2) inside Cup2. Here vertically dashed lines separate three 

regions: a) Non-Equilibrium Region; b) Quasi-Equilibrium Region for T2 smaller than room temperature; c) Quasi-

Equilibrium Region for T2 higher than room temperature [6]. It can be observed from figure that the experimental 

K1 is neither constant nor linear as a function of T2. This finding is in total disagreement with the predicted 

theoretical model. On top of that the experimentally obtained K1 maxima are considerably smaller than those 

reported for copper [0.92 cal /( C sec cm)], aluminum [0.49 cal /(C sec cm)] and brass [0.26 cal /( C sec cm)] 

[8]. The difference between reported and experimentally determined values is bigger, the higher the reported K 

value [7].  

3.2 The influence of Teflon Cup 

The model needs a correction in region B because the total increase in T2 is due to the heat conduction through the 

metallic cylinder (QCYLINDER), plus the heat conduction from the Teflon Cup (QCUP). In this sense, the total heat 

transferred to the water inside Cup 2 can be written as  

QWATER  = QCYLINDER  +  QCUP   …………… (4) 

 

 QCYLINDER calculated from eqn 4 can be substituted into eqn 1. QWATER  is calculated as in eqn 4 and QCUP is 

calculated in eqn 5 

QCUP = (KTE ATE / dTE) TEt   ……………. (5) 

 

 where t is the same time interval as before,TTE  is the temperature difference between the internal and external 

walls of the teflon cup, dTE  is the thickness of the walls of the cup (7.5 mm), KTE is the thermal conductivity of 

teflon (4.53 X 10
-4

 cal/(
o
C s cm)) and ATE is the effective area of the cup in contact with the water inside it. This area 

can be written as the sum of lateral and the bottom areas and can be approximated by the eqn 6 using an average cup 

radius RTE (37.2 mm)  

ATE = 2 RTE H + RTE
2 
   ……………… (6) 

 

where H is the height of the water column inside Cup 2 (76.1 mm). Note that the cup is not in contact with the water 

inside it. According to the above, the QCYLINDER to be used in eqn 1 would be given by equation 7.  

QCYLINDER = M2CWW – {(KTE/dTE)(2RTEH+R
2

TE)t}  …………. (7) 

 

This suggests an even worse result than the one observed in Eqn. 3, given that a smaller QCYLINDER would be 

obtained. The total heat through the cylinder is used in increasing the water temperature inside Cup 2 (QWATER), 

cup temperature (QCUP_A) and remaining portion is lost in heat transfer through Cup 2 to the atmospheric 

environment (QCUP_B). Thus, QCYLINDER can be written as  

QCYLINDER = QWATER + QCUP _A + QCUP _B   …………… (8) 

Here QWATER is calculated as in Eqn.2 and QCUP_B is calculated as in equation 5. In order to calculate QCUP_A it 

is assumed a linear temperature distribution though the thickness of the Teflon cup as illustrated by the solid line in 

Fig. 3(a). It is also assumed that for each t the temperature distribution varies qualitatively according to the dashed 

line. According to these approximations, the total heat stored inside the cup material itself would be 

                                              
dTE                                                                                                    dTE

QCUP_A = 0∫ TE ATE CTE  (x) dx = TE ATE CTE   0∫(x) dx   ……….. (9) 

 



Rajesh Purohit, Neeraj Shandilya /International Journal of Engineering Research and 

Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.822-828 

824 | P a g e  

 

 

Here TE is the mass density of Teflon (2200 kg/m
3
), ATE is given by equation 6, CTE is the specific heat of Teflon 

(0.28 cal/ (g 
o
C)), and T(x) is the temperature variation inside the thickness of the cup as a function of the length.. 

In fig 3(a), TEXT is the external temperature;  TINT-1 and TINT-2 are the internal initial and final temperatures 

respectively. In fig 3(b), T1 is the constant temperature of cup1; T2-i and T2-f are the initial and final temperatures of 

Cup2 respectively. The solid line (numerically numbered 1) represents the initial temperature distribution and the 

dashed line (numbered 2) represents the final temperature distribution after the time interval t for both curves.  This 

information can be extracted from Fig. 3(a) [9] using the difference between the two equations that describe each of 

the linear dependence of T with x before and after t. According to that, the initial distribution of temperature is 

T1(x) = TINT-1 – a1.x with a1 = (TINT-1 – TEXT)/dTE     …………. (10) 

 

And the final distribution temperature after t elapsed is  

T2(x) = TINT-2 – a2.x with a2 = (TINT-2 – TEXT)/dTE    ……………. (11) 

Using eqn 10 and 11, T(x) can be written as  

T(x) = T2(x) – T1(x) = TINT-2 – TINT-1 + {(TINT-1 – TINT-2)/dTE} x  …………. (12) 

Taking into account that the variation from TINT-1 to TINT-2 is equal to 1
0
C, eqn 12 can be written as T(x) = 1 – 

(x/dTE)    ………….. (13) 

The substitution of eqn 13 into eqn 9 leads to  
                                                                                                           dTE

 

QCUP_A = TE ATE CTE   0∫ (1 - x/dTE) dx = TE ATE CTE  (dTE / 2)   ………….. (14) 

Then the expression for QCYLINDER can be obtained by substituting eqn 2, 5 and 14 into eqn 8

QCYLINDER = M2CW W + {(KTE /dTE) (2RTE H + R
2

TE)TTE t } + TE ATE CTE (dTE /2)  ……. (15) 

 

3.3. Losses through cylinder 

Two other different mechanisms exist, besides the heat conduction from cup1 to cup2 by the metallic cylinder. The 

first of them regards the heat that is lost through the surface of the cylinder (QSURF) in its radial direction, i.e. along 

the vertical arrow in Fig. 1 because, in principle, each section of the cylinder sits at a temperature T higher than 

room temperature. The second mechanism regards the storage of heat inside the metallic cylinder itself (QSTORED) 

as previously described for Cup 2 [5]. In this sense, the total heat lost (QLOST) can be written as  

QLOST = QSURF + QSTORED     ………….. (16) 

The heat lost through the surface QSURF is one of the most difficult to be quantified, mainly because of its three-

dimensional character. As a very rough approximation, it could be said that the heat transfer rate at each section of 

the cylinder (i.e. in its radial direction) would be given as  

QSURF/t) = -K (ASEC/LSEC)x 

Here t is the elapsed time as before, K is the thermal conductivity of the metallic cylinder, T(x) is the 

temperature difference between the highest temperature inside each section of the cylinder and room temperature, 

ASEC is an effective area and LSEC is an effective length for the heat transfer, respectively. Just as a simple 

approximation it could be assumed that ASEC can be approximated by the perimeter of the section at position x, i.e., 

ASEC =  D & the highest temperature inside the section is localized at the cylinder axis, i.e., a linear gradient of 

temperature will be assumed for each section with the highest temperature value sitting at the cylinder axis and the 

lowest temperature value sitting at the external surface thus leading to LSEC = D/2. According to the above, QSURF  

could be written as  

L

L 

QSURF = 0∫ (K 2D/D)t T(x) dx = 2K t 0∫ T(x) dx    …………… (18) 

 

Note that L in equation 18 refers to the cylinder length between the two cups. In order to solve the above equation 

T(x) must be known. Applying the same approximation as in the previous section  

TINT = T1- ax with a= (T1-T2)/L    ……………… (19) 

Then QSURF can be finally written as:  

 

L 

QSURF = 2K t 0∫ (T1-TEXT) – {(T1-T2)/L} x dx = 2KL t {T1-TEXT - (T1-T2)/2}   ……… (20) 

On the other hand, the heat stored inside the cylinder itself QSTORED can be calculated using the same procedure as 

before for the case of Cup 2. The only difference now is the fact that the temperature distribution inside the cylinder 

and its variation after t would be illustrated by figure 2(b). According to figure 2(b), T(x) can be written as  
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T(x) = T1 - (T1-T2_f) x /L – {T1- (T1-T2_i) x/L} = x/L (T2_f – T2_i) = x/L    …………  (21) 

 

because the difference between T2_f and T2_i is always kept equal to 1C. The heat stored in each section of the 

metallic cylinder can be written as  

Q(x) = M D/2


CM T(x)     …………  (22) 

 

where M and CM are the mass density and specific heat of the metallic cylinder, respectively. For Brass, the value 

of M (CM) is equal to 8400 (0.090). For Aluminium, it is 2700 (0.215) and for Copper, it is 8920 (0.092) kg/m
3
 (cal/ 

(g C)). After the substitution of eqn 21 into 22, the total stored heat can be calculated,  

L 

QSTORED = 0∫ M (D/2)
2
 CM (x/L) dx = M (D/2)

2 
CM (L/2)  ………. (23) 

The substitution of eqn 20 and 23 in eqn 16 leads to final QLOST 

QLOST = 2KLtT1 – TEXT – (T1-T2) /2MD/2


CM (L/2)   ……….. (24) 

For region B, all contributions add up as 

QCYLINDER = M2CWTW – {(KTE/dTE) (2RTEH + R
2
TE) TTE t} + 2KLt {T1-TEXT-(T1-  

                       T2)/2} + M  (D/2)
2
 CM (L/2)     …………………  (25) 

The substitution of eqn 25 in 1 would lead final value of K for region B of: 

KB = Ψ/Z     ……………. (26) 

 

CW TW – {(KTE /dTE ) (2RTE H + R
2
TE ) TTE t} + M D


CM (L/2)   …………… (27) 

Z = (A/L) t TW –  L t {T1-TEXT – (T1-T2) / 2}      ……………….  (28) 

 

For region C contributions in equation 15 and 24 add up as  

QCYLINDER = M2 CW W + {(KTE/dTE) (2RTE H + R
2
TE) TTEt} + TE ATE CTE (dTE /2) + 

                             2KLt (T1-TEXT – (T1-T2) /2) + M  (D/2)
2
 CM (L/2)     ………..  (29) 

 

The substitution of equation 29 into equation 1 would lead to a final K value for region C  

KC =  /Z    ………… (30) 

 = M2CW TW + {(KTE /dTE) (2RTE H + R
2

TE)TTE t} + M 

DCL/2TE ATE       

             CTE (dTE /2)  …………….. (31) 

 

and Z is given by equation 28. These models are based on many approximations. Even though the mathematical 

models are not accurate, the most important physical mechanisms for heat conduction and heat storage have been 

identified.  

4. Alternative Approach 
In order to better understand the system, a different approach can be adopted by a huge turn in the experiment [10]. 

We can: a) Adopt the reported K values as known constants; b) Introduce a function F (T2) that would represent the 

correction that must multiply the second term of Z in eqn. 28 for the right answer, thus leading to a new function 

called Z2; c) Determine F(T2) using expressions 26, 27 and the corrected equation 28. Note that a new semi-

empirical model for the second term of equation 28 would be obtained this way. Curiously, after the proper 

substitution, the obtained F (T2) is a linearly decreasing function of T2 for the three cylinders, i.e., F (T2) = a - b.T2. 

Fig. 2(b) presents the experimental data for the case of the aluminum cylinder only. In this figure Empirical function 

F (T2) is shown as a function of the temperature inside Cup2 for the correction of the second term in eqn. 28 for the 

case of aluminium cylinder. Note that F (T2) is a linear function of T2. The corresponding coefficients of the linear 

fits for the case of the three metallic cylinders are presented in the inset of Fig. 2(b). Note that each metallic cylinder 

has its own set of fitted parameters, indicating that the correction function F (T2) is in fact a function of the cylinder 

material also. The fitted parameters, a and b, are plotted in Fig. 4 as a function of each reported K value, where the 

cylinder material is also identified. Parameter a is plotted as solid squares, while parameter b is plotted as open 

triangles. It is also interesting to observe the non-linear variation of both parameters as a function of the reported K 

value, indicating that once again the cylinder material itself plays a very important role. Note that both a and b 

parameters increase with K, and that while the ratio of the highest to lowest reported K value is about 3.5, the ratio 

of highest and lowest a (or b) parameters is less than 2. The final semi-empirical correction to the second term of 

eqn 28 would depend upon two variables (K and T2) as in eqn 32. Moving to the analysis of region C, the corrected 
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Z2 term should be used in place of Z in equation 30 as discussed above. The first three terms in equation 31 are 

basically the same as in equation 27 (the only difference being the fact that the second term is now added rather than 

subtracted in the whole expression). According to the previous discussion about region B, these terms can be 

considered mathematically correct, and in this case, the only possibility of disagreement must come from the fourth 

term in equation 31. The fourth term in equation 31 is more than twice as big as the sum of the other three in the 

same expression. Thus, it is reasonable to assume that the fourth term has been the overestimated one. The main 

reason for that is the very simple distribution of temperature inside the walls of Cup2 itself. Following the same 

procedure as for region B, we can try to determine a function G(T2) that would multiply the fourth term in equation 

31, thus leading to a corrected 2 value in substitution to  in equation 31. Once again, a semi-empirical model 

would be obtained. In practice, once again the obtained function is linearly dependent on T2, and can be written as G 

(T2) = c + d .T2. The fitted parameters c and d are plotted in Fig. 4 for the case of the three metallic cylinders. As in 

the previous case, the fitted parameters depend on the material also and the final G (T2) could then be written as in 

eqn 33. Fig. 5 shows the final results obtained with Copper, Aluminium and Brass cylinders. The improvement of 

the semi-empirical model is outstanding.               

                                  F (T2, K) = a (K) – b (K).T2     ………………..  (32) 

                                 G (T2, K) = c (K) + d (K). T2    ………………..  (33) 

 
Fig. 1 Experimental Set up 

 

 

 

 

 

 

 

Fig.2 (a) Variation of calculated value of thermal conductivity with T2 

(b) Variation of empirical function with T2 
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Fig 3  (a) Linear temperature distribution though the thickness of the Teflon cup 

(b) Variation of temperature along the extension of the metallic cylinder 

 
 Fig. 4: Variation of fitted parameter (a, b, c and d) with reported value of thermal conductivity 

     

          

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Final model showing the variation of three thermal conductivities (K1, Kf, KT) with temperature T2         

 

K1 – Thermal conductivity according to eqn.1 assuming isolated system 

Kf- Thermal conductivity according to the corrections considered in region B & C 

KT – Reported or literary values of Thermal conductivity 

5. Conclusions 
The different aspects of the thermal conductivity have been clearly explained. The advantage of introducing the 

functions F and G in the corrected models was that the temperature distribution inside each section of the cylinder 

and inside the walls of Cup 2 gets oversimplified. Thus in an isolated system, the experimental region and the region 

which was corrected theoretically can be compared easily with the aid of figure 5. The theoretical value of the 

thermal conductivity of an isolated system (KT) and the corresponding corrected value were found to be lying 

around each other but they were comparatively higher than the values of K as per eqn. 1.  
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