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Abstract: In the power quality analysis non-stationary nature 

of voltage distortions require some precise and powerful 

analytical techniques. The time-frequency representation 

(TFR) provides a powerful method for identification of the 

non-stationary of the signals. This paper proposes a 

comparative study on two techniques for analysis and 

visualization of voltage distortions with time-varying 

amplitudes. The techniques include the Discrete Wavelet 

Transform (DWT) and the Discrete Orthogonal S-Transform 

(DOST). Several power quality problems are analyzed using 

both the Discrete Wavelet Transform and DOS–transform, 

The MATLAB/ SIMULINK based simulation showing clearly 

the advantage of the DOS– transform in detecting, localizing, 

and classifying the power quality problems.  
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1. INTRODUCTION 

     Power Quality has been a research issue in the power 

engineering community since the past decade. With extensive 

use of power electronic devices and microprocessor-based 

systems requiring high quality of electric power, power 

quality has become a major concern. Poor electric quality can 

result in malfunctioning of these devices and may have 

expensive consequences. To improve the quality of electric 

power, sources of disturbances must be recognized and 

controlled [1,8].  

This requires continuous monitoring of voltage and current 

waveforms and their instantaneous sampled values at certain 

customer sites. But the huge amount of data collected and 

stored poses a great challenge for data analysis and 

identification of the type of disturbance. To monitor electrical 

power quality disturbances, short time discrete Fourier 

transform (STFT) is most often used [2,3].  

But for non- stationary signals, the STFT does not track 

the signal dynamics properly due to the limitations of a fixed 

window width chosen a priority [2].On the other hand, 

Wavelet Transform(WT) [5] uses short windows at high 

frequencies and long windows at low frequencies; thus closely 

monitoring the characteristics of non-stationary signals.  

These characteristics of the Wavelet Transform [7] provide 

an automated detection, localization, and classification of 

power quality disturbance waveforms. Although wavelet 

multi-resolution analysis (MRA) combined with a large 

number of neural networks provides efficient classification of 

power quality (PQ) events, the time-domain featured 

disturbances [9], such as sags, swells, etc. may not easily be 

classified. In addition, some of the important disturbance 

frequency components are not extracted precisely by Discrete 

Wavelet Transform [4,6]. 

     A more recent time-frequency representation, the S-

transform [2,8], has found application in a range of fields. It is 

similar to a continuous wavelet transform in having 

progressive resolution but unlike the wavelet transform the S-

transform retains absolutely referenced phase information. 

The S-transform not only estimates the local power spectrum, 

but also the local phase spectrum. It is also applicable to the 

general complex valued time series.  

One drawback to the S-transform [10] is the size of its 

redundant representation of the time-frequency plane. It is 

apparent that a more efficient representation of the S-

transform is needed, one that provides a framework on which 

reduced sampling can be laid. This paper, therefore, presents a 

new transform, known as Discrete Orthogonal S-Transform 

(DOST). 

 

II. WAVELET TRANSFORM 

     The wavelet analysis block transforms the distorted signal 

into different time-frequency scales. The wavelet transform 

(WT) uses the wavelet function  and scaling function  to 

perform simultaneously the Multi Resolution Analysis (MRA) 

decomposition and reconstruction of the measured signal. The 

Wavelet function  will generate the detailed version (high-

frequency components) of the decomposed signal and the 

scaling function   will generate the approximated version 

(low-frequency components) of the decomposed signal. The 

wavelet transform is a well-suited tool for analyzing high-

frequency transients in the presence of low-frequency 

components such as non stationary and non periodic wideband 

signals [3]. 
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A. Mathematical Model of DWT 

     Before the WT is performed, the wavelet function  (t)and 

scaling function  (t) must be defined. The wavelet function 

serving as a highpass filter can generate the detailed version of 

the distorted signal, while the scaling function can generate 

the approximated version of the distorted signal. In general, 

the discrete  (t) and (t) can be defined as follows: 
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Where jc  is the scaling coefficient at scale , and jd  is the 

wavelet coefficient at scale j. Simultaneously, the two 

functions must be orthogonal and satisfy the properties as 

follows: 
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Assuming the original signal [ ]jx t  at scale j is sampled at 

constant time intervals, thus 0, 1 1[ ] ( ..... )j Nx t v v v  , the 

sampling number is 2JN   . is an integer number. For [ ]jx t , its 

DWT mathematical recursive equation (as ) is presented as 

follows: 
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Where 1,j nu   is the approximated version at scale 

j+1. 1,j nw   is the detailed version at scale j+1, and j is the 

translation coefficient. According to the orthonormal wavelet 

functions and (5), the signal [ ]jx t can be reconstructed from 

both 1ju  and 1,jw  coefficients using the inverse discrete 

wavelet transform (IDWT) [as 1 1j J JV W V     ]. Fig. 1 

illustrates the three decomposed/reconstructed levels of the 

DWT algorithm. At each decomposition level, the length of 

the decomposed signals (e.g., u1 and w1) is half that of the 

signals(x0) in the previous stage. 

B. parseval’s theorem in DWT application 

     In Parseval‟s theorem, assuming a discrete signal x[n] is 

the current that flows through the 1- resistance, then the 

consumptive energy of the resistance is equal to the square 

sum of the spectrum coefficients of the Fourier transform in 

the frequency domain 

221
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where N is the sampling period, and ak is the spectrum 

coefficients of the Fourier transform. 

 
Fig. 1. Three decomposed/reconstructed levels of DWT. 

 

     To apply the theorem to the DWT, we use (5) and (9) to 

obtain (10) that is the Parseval‟s theorem in the DWT 

application 
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Hence, through the DWT decomposition, the energy of the 

distorted signal is shown by (10). The first term on the right of 

(10) denotes the average power of the approximated version 

of the decomposed signal, while the second term denotes that 

of the detailed version of the decomposed signal. The second 

term giving the energy distribution features of the detailed 

version of distorted signal will be employed to extract the 

features of power disturbance. 

III. S –TRANSFORM AND DOST 

A. S-Transform  

    It is well known that information is contained both in the 

phase and amplitude spectrum. In order to utilize the 

information contained in phase of the continuous wavelet 

transform (CWT), it is necessary to modify the phase of the 

mother wavelet. The CWT W(τ ,d) of a function h(t) is defined 

as 

     dtdtwthdW ,,   




                                (11) 

where w(t,d)is a scaled replica of the fundamental mother 

wavelet; the dilation determines the width of the wavelet and 

this controls the resolution. The S–transform [7,8,9] is 
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obtained by multiplying the CWT with a phase factor, as 

defined below 

   dWefS fj ,, 2                                      (12) 

where the mother wavelet for this particular case is 

defined as 
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     In equation (2) dilation factor d is inverse of frequency f. 

Thus, final form of the continuous S–transform is obtained as  
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and width of the Gaussian window is 

  fTf 1                                                      (15) 

B. Discrete Orthogonal S transform: 

     There are several reasons to desire an orthogonal time-

frequency version of the S-transform. An orthogonal 

transformation takes an N-point time series to an N-point 

time-frequency representation, thus achieving the maximum 

efficiency of representation. Also, each point of the result is 

linearly independent from any other point. 

The transformation matrix (taking the time series to the 

DOST representation) is orthogonal, meaning that the inverse 

matrix is equal to the complex conjugate transpose. By being 

an orthogonal transformation, the vector norm is preserved. 

Thus a Parseval theorem applies, stating that the norm of the 

time series equals the norm of the DOST. An orthogonal 

transform is referred to as an energy preserving transform. 

The efficient representation of the S-transform can be 

defined as the inner products between a time series h[kT ] and 

the basis functions defined as a function of [kT ], with the 

parameters ν (a frequency variable indicative of the centre of a 

frequency band and analogous to the “voice” of the wavelet 

transform), β (indicating the width of the frequency band), and 

τ (a time variable indicating the time localization). 
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These basis functions S[ν,β,τ ][kT ] for the general case are 

defined as 
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At this point, the sampling of the time-frequency space 

has not yet been determined. Rules must be applied to the 

sampling of the time-frequency space to ensure orthogonality. 

These rules are as follows 

• Rule 1. τ = 0, 1, . . . , β −1. 

• Rule 2. ν and β must be selected such that each Fourier 

frequency sample is used once and only once. 

Implicit in this definition is the phase correction of the S-

transform that distinguishes it from the wavelet or filter bank 

approach. Here the parameters ν, β, τ are integers defined such 

that the functions do form a basis. For each voice, there are 

one or more local time samples (τ ), this number being equal 

to β (see Rule 1) thus the wider the frequency resolution (large 

β), the more samples in time (large τ ). This can be seen as a 

consequence of the uncertainty principle.  

Examples and methods for determining these parameters 

are described below. Distinct from a wavelet function, these 

basis functions have no vanishing moments (in fact the 

functions are normalized to unit area). These basis functions 

are not translations of a single function, and they are not self-

similar. 

IV. SIMULATION MODEL AND RESULTS 

A. Power Disturbance Data Set 

The DWT and DOST  presented in this work is designed to 

recognize pure sine wave(a) and four types of power quality 

disturbances including  voltage sag(b), voltage swell(c), 

interruption(d) and oscillatory transient(e), based on the test 

system shown in Fig. 2 and generated waveforms using 

MATLAB/SIMULINK are shown in Fig. 3. 

 
Fig. 2 PQ Disturbances generating test system 

 

 
(a) Pure Sine Wave 

 
(b) Voltage Sag 

 
(c) Voltage Swell 
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(d) Momentary Interruption 

 
(e) Impulsive Transient 

Fig. 3 Typical power quality disturbance categories 

B. WT-Simulation Results 

 

 
Fig. 4 WT-Contour for sinusoid voltage 

 

 
Fig. 5 WT-Contour for voltage sag 

Fig.4-8 shows the output of Wavelet Transform.This 

thesis has been employed to a few types of disturbances 

and can be applied for other types of disturbances such as 

notches, glitches, harmonics etc.  

 
Fig. 6 WT-Contour for voltage swell 

 
Fig. 7 WT-Contour for momentary interruption 

     

 
Fig. 8 WT-Contour for impulsive transient   

 

C. DOST-Simulation results(2D & 3D) 

 
Fig. 9 DOST-Contour (2D) for sinusoid voltage 
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Fig. 10 DOST-Contour (3D) for sinusoid voltage 

 
Fig. 11 DOST-Contour (2D) for voltage sag 

 
Fig. 12 DOST-Contour (3D) for voltage sag 

 
Fig. 13 DOST-Contour (2D) for voltage swell 

 
Fig. 14 DOST-Contour (3D) for voltage swell 

 
Fig. 15 DOST-Contour (2D) for momentary interruption 

 
Fig. 16 DOST-Contour (3D) for momentary interruption 

 
Fig. 17 DOST-Contour (2D) for oscillatory transient 

Figure 9-18, show the 2-D, 3-D mesh plot for various 

signals. Power quality disturbance signals such as swell, sag, 

oscillatory transients, momentary interruption etc. must be 

detected and classified properly to initiate corrective measures 

to ensure quality of power. S-Transform generates contours, 

which are suitable for classification by simple visual 

inspection unlike wavelet transforms (WT) that requires 

specific methods like Standard-Multi resolution analysis 

(MRA) for classification. 

 
Fig. 18 DOST-Contour (3D) for oscillatory transient 

Fig.4-8, shows the detailed version of Fig. 3a, 3b, 3c, 3d, 

3e after application of db4 wavelet in four level of 

http://www.medwelljournals.com/fulltext/?doi=ijepe.2009.59.68#f5
http://www.medwelljournals.com/fulltext/?doi=ijepe.2009.59.68#f14
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decomposition. Although, detailed version indicates presence 

of harmonics at different times, but can‟t be classified. From 

the S-Transform plot, magnitude, frequency and time 

information can be readily obtained to detect, localize and 

visually classify signal events in three-dimensional space.  

V. CONCLUSION 

The simulation results showed that the proposed method 

has the ability of recognizing and classifying different power 

disturbance types efficiently compared with Discrete Wavelet 

Transform (DWT). Discrete Orthogonal S Transform (DOST) 

generates contours, which are suitable for classification by 

simple visual inspection unlike DWT that requires specific 

methods like Multi Resolution Analysis (MRA), Support 

Vector Machine (SVM) and Probabilistic Neural Network 

(PNN) for classification. The DOS-Transform, seems to be a 

powerful tool for detection, localization and classification of 

power system disturbances compared to Short Time Fourier 

Transform (STFT), Fast Fourier Transform (FFT) Discrete 

Fourier Transform (FFT) as well as Discrete Wavelet 

Transforms (DWT). 
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