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ABSTRACT 
Landscape metrics are quantitative spatial measures 

that aid in the landscape spatial pattern analysis.  

Understanding the role and capability of spatial metrics 

with the remote sensing data of various spatial 

resolutions for quantifying landscape patterns is crucial 

in assessing the potential of spatial metrics. The 

objective of this communication is to analyse the role of 

the landscape metrics using multi-resolution (spatial) 

remote sensing data for quantifying landscape patterns. 

Sensitivity and effectiveness in quantifying the spatial 

pattern components were analyzed considering part of 

Greater Bangalore as a sample space with 13 widely 

used landscape spatial metrics with the data from 

various sensors of differing resolutions for the month of 

January. The results indicate that all except three 

(cohesion, connect and shape) of the landscape metrics, 

were significantly dependent on the spatial resolution of 

the remote sensing data. This emphasises the 

consideration of appropriate spatial resolution while 

analyzing spatial patterns of the landscape, which 

provides a base for proper use of landscape metrics in 

the planning and management. 

Keywords - Landscape, Spatial Metrics, Spatial 

Resolution, Remote Sensing data, Image Processing, 

Fragstat software. 

1. INTRODUCTION 
Landscape metrics based on category, patch, and class 

representations developed in late 80’s are quantitative 

spatial measures of landscape pattern exhibiting variations 

in spatial characteristics ([1], [2], [3], [4], [5]). These 

metrics interpret and quantify geometric properties of a 

landscape and have been extensively used in landscape 

ecology [3]. These metrics are now finding their practical 

applications in the regional planning ([6], [7], [8], [9]) and 

monitoring ([10], [11], [12], [13], [14], [15]) of landscapes.  

Spatial characteristics of a landscape [1] are quantified as 

numeric through metrics and are interpreted, compared  

 

with the various ground data and investigating it further for 

diverse landscape. However, these exercises are without 

considering the spatial resolution and its effect in 

quantification of metrics. Spatial metrics bring out the 

pattern of change in a particular landscape and needs to be 

understood considering all aspects to understand the 

process ([16], [17]) as spatial metrics behave differently 

with different pattern of landscape [3].  Uuemaa et al., 

2009 provides an account of spatial metrics and their 

relationships in the landscape planning and other activities. 

Landscape metrics have been increasingly applied in 

understanding landscape dynamics with adequate 

explanations of the underlying processes. Aggregation 

Index, cohesion index, etc. are new indices being evaluated 

and considered [19] and exploration is in progress to apply 

these metrics for various purposes to link with the current 

scenarios. DPSIR (Driving force–pressure–state–impacts–

response) approach [9] was used to evaluate the land use 

changes and related environmental impacts that have 

occurred in recent decades by integrating  the analytical 

and operational approaches with help of metrics to pursue 

sustainable management. Peng et al., [20] evaluated the 

effectiveness of landscape metrics in quantifying spatial 

patterns of 36 simulated landscapes as sample space 

through 23 widely used landscape metrics with the 

application of the multivariate linear regression analysis. 

The results highlight that metrics are effective in 

quantifying several components of spatial patterns. 

Li et al., [21] examined landscape metrics based on its 

functions as landscape and class level metrics. 19 

landscape level metrics and 17 class level metrics have 

been tried using five data sets and establish the factors that 

describe landscape dynamics. The resolution and scale are 

the two crucial factors considered in the landscape 

analysis, which are being explored among many factors 

([22], [10], [23], [24], [25], [26]; [27]). The analysis of 

effectiveness of spatial resolution on various landscape 

fragmentation indices, state that spatial resolution, might 
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have a role in analysing and understanding landscape 

patterns [28]. The integrity of the analysis of landscape 

depends on the selection of appropriate spatial metrics, the 

resolution of spatial data apart from careful interpretation 

of the results([29], [21]).This communication analyses the 

role of the spatial resolution in quantifying the real world 

scenario. 

2. Objective 
The objective of the study is to understand the role of 

spatial resolution while assessing landscape dynamics 

through spatial metrics and the effectiveness of the 

landscape metrics in supporting landscape planning and 

management decisions 

 

3. Study area 
The influence of spatial resolution in assessing the 

landscape dynamics through spatial metrics has been done 

considering multi-resolution remote sensing data for the 

sample space - northern region of Greater Bangalore. 

Greater Bangalore is the capital city of the state of 

Karnataka, India and  the hub of   administrative, cultural, 

commercial, industrial, and knowledge activities. The 

spatial extent of Greater Bangalore is about 741 sq. km. 

and lies between the  latitudes  12°39’00’’  to  13°13’00’’  

N  and  longitude  77°22’00’’  to  77°52’00’’  E. It is the 

fifth largest metropolis in India currently with a population 

of about 8 million [30, 31]. The Sample space chosen for 

the study lies in the northern part of Greater Bangalore 

with representative fractions of all land use types. 

Bangalore has witnessed rapid urbanization during 1990-

2010 which has brought on fundamental land use change. 

The conversions between urban land, vegetation and water 

were the major change types in the region. 

 

 
Fig. 1. Study Area: Greater Bangalore. 

 

4. Material and Methods 
Analysis was carried out using the multi-resolution remote 

sensing data acquired during January 2010. Multi-

resolution remote sensing data includes Ikonos (4 m), 

Landsat Series Enhanced Thematic mapper (28.5 m) 

sensor, IRS P6 LISS III sensor (5.8 m ) and Modis data 

(500 m). Landsat data of  Thematic mapper (28.5m) 

sensors for 2010 was downloaded from public domain 

(http://glcf.umiacs.umd.edu/data).  MODIS data ―MOD 02 

Level-1B Calibrated Geolocation Data Set‖ were 

downloaded from EOS Data Gateway  

(http://edcimswww.cr.usgs.gov/pub/imswelcome). IRS P6 

LISS-III data was purchased from the National Remote 

Sensing Centre, Hyderabad (www.nrsc.gov.in). Geoeye 

Foundation provided Ikonos (4 m) data for academic use. 

Base layers such as city boundary, etc. were digitized with 

a negligible error count of 0.001from the city map 

(procured from BBMP: Bruhat Bangalore Mahanagara 

Palike), cadastral revenue maps (1:6000), Survey of India 

(SOI) toposheets (1:25000, 1:50000 and 1:250000 scales).  

Ground control points to register, geo-correct remote 

sensing data and Verify the output were collected using 

handheld pre-calibrated GPS (Global Positioning System), 

Survey of India Toposheet, Bhuvan and Google earth 

(http://bhuvan.nrsc.gov.in; http://earth.google.com). 

DATA Year Purpose 

Landsat Series 

Multispectral 

sensor (57.5m) 

1973 Land use 

analysis 

Landsat Series 

Thematic mapper 

(28.5m) and 

Enhanced 

Thematic Mapper 

sensors 

1992, 

1999, 

2002, 

2006, 

2010 

 

  Land use 

analysis 

Survey of India 

(SOI) toposheets of 

1:50000 and 

1:250000 scales 

 Boundary and 

base layers. 

Table 1:  Materials used in the analysis. 

 

5. Analysis: 
5.1 Preprocessing: The remote sensing data obtained were 

geo-referenced, rectified and cropped pertaining to the 

study area. Landsat ETM+ bands of 2010 were corrected 

for the SLC-off by using image enhancement techniques, 

followed by nearest-neighbour interpolation. 

5.2 Land use analysis: The method involves i) generation 

of false colour composite (FCC) of remote sensing data 

(bands – green, red and NIR). This helped in locating 

heterogeneous patches in the landscape ii) selection of 

training polygons (these correspond to heterogeneous 

patches in FCC) covering 15% of the study area and 

uniformly distributed over the entire study area, iii) loading 

these training polygons co-ordinates into pre-calibrated 

GPS, vi) collection of the corresponding attribute data 

(land use types) for these polygons  from the field . GPS 

helped in locating respective training polygons in the field, 
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iv) supplementing this information with Google Earth  v) 

60% of the training data has been used for  classification of 

the data, while the balance is used for validation or 

accuracy assessment.  

 

Land use  classification was carried out using supervised 

pattern classifier - Gaussian maximum likelihood 

algorithm. This classifier is superior as it uses various 

classification decisions using probability and cost functions 

(Duda et al., 2000). Mean and covariance matrix are 

computed using estimate of maximum likelihood 

estimator. Land use was computed using the temporal data 

through open source program GRASS - Geographic 

Resource Analysis Support System 

(http://wgbis.ces.iisc.ernet.in/grass/index.php). Four major 

types of land use classes were considered: built-up area, 

forestland, open area, and water body. Application of this 

method resulted in accuracy of about 88% using Landsat 

data, 91% accuracy using IRS-P6 data, 94% accuracy 

using Ikonos data and 74% using Modis data. For the 

purpose of accuracy assessment, a confusion matrix was 

calculated.  

 

5.3 Landscape Metrics: Landscape metrics were 

computed for each of chosen multi-resolution data - 

MODIS data (500 m) was resampled to 250 m and 100 m. 

Landsat resampled to 30 m and 15m, Ikonosof 4m 

resampled to 3m 2m and 1m respectively. The resampled 

data were considered for further analysis. Classified land 

use data (data and also for resampled data) was converted 

to ASCII format and metrics at the landscape level were 

computed with FRAGSTATS [32]. Fragstat is open-source 

software that can be freely downloaded 

(http://www.umass.edu/landeco/research/fragstats/fragstats

.html). The spatial metrics include the patch area, 

edge/border, shape, compact/contagion/ dispersion and are 

listed in Appendix 1. 

 

6. Results and Discussion 
Land use analysis: Land use analysis using Gaussian 

Maximum Likelihood Classifier was done for multi-

resolution data (MODIS, Landsat, IRS P6 and Ikonos) and 

the results are presented in Table 2 and figure 4. Overall 

accuracy of the classification was 88% using Landsat data, 

91% accuracy using IRS-P6 data and 74% using Modis 

data respectively.  

 

Class  Urban Vegetati

on 

Water Others 

Year  Ha Ha Ha Ha 

1973 5448 46639 2324 13903 

1992 18650 31579 1790 16303 

1999 24163 31272 1542 11346 

2002  25782    26453 1263 14825 

2006 29535 19696 1073 18017 

2010 37266 16031 617 14565 

Table 3.a. Temporal Land use dynamics in Hectares 

 

 

 
 

Figure 2: Land use statistics a). Ikonos 4m, b).IRS-P6 5 m, 

c). Landsat-30m,  d). Modis-500m. 

 

Class  

 

Urban 

% 

Vegetation 

% 

Water 

% 

Others 

% 

Year  

 

1973 7.97 68.27 3.40 20.35 

1992 27.30 46.22 2.60 23.86 

1999 35.37 45.77 2.26 16.61 

2002 37.75 38.72 1.84 21.69 

2006 43.23 28.83 1.57 26.37 

2010 54.42 23.41 0.90 21.27 

Table 3.b. Temporal Land use dynamics in % 

Landscape Metrics: Landscape metrics were computed for 

varied resolution of data for sample space in Greater 

Bangalore. The data was classified into 4 land use 

categories in a heterogeneous landscape, Urban category 

was considered for further analysis as the landscape is 

rapidly urbanizing and constitute a dominant class. Table 3 

lists the quantified values of each metrics across 

resolutions of multi-resolution data.   
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Percentage of Landscape (PLAND) and Number of 

Patches (NP) as tabulated in table 3, Indicates the level of 

fragmentation. The results highlight the dependence on 

spatial resolutions evident from the refinement of values 

with finer spatial resolutions. PLAND indicates that the 

urban patches in this region is becoming a single patch. 

Figure 3a highlight the correlation of PLAND with the 

resolutions (r = 0.97). Number of Patches (NP) indicates 

that smaller patches aggregating to form a cluster of the 

urban surface. Figure 3b indicates that better spatial 

resolution reveals large number of smaller patches and as 

the resolution becomes finer the number of patch metrics 

becomes precise. 

 

Largest patch index (LPI) indicate that the landscape is in 

the process of aggregation to a single patch indicating 

homogenisation of landscape. This metrics is not 

dependent on resolutions as in quantifies the largest patch 

and almost accurately in all resolutions as illustrated in 

figure 3c. 

 

The Patch density (PD) indicates the densification of a 

particular patch. Figure 3d indicates of improved 

performance with finer resolution. This was verified with 

the ground truth data and validation of the classified land 

use data with spatial metrics along with the resolutions of 

the data.   

 

Fractal dimension index (FRAC) indicates complexity of 

the shape, while  FRAC_MN and FRAC_AM which 

indicates complexity of shape around the mean and with 

respect to area weighted mean (AM)  which has very high 

values indicating complex geometry. Moderate and high 

resolution images were able to quantify these accurately 

(Figure 3e).   

 

Clumpiness index (Clumpy), Aggregation index (AI), 

Interspersion and Juxtaposition Index (IJI) highlights the 

occurrence of same patch in the neighborhood. Clumpiness 

and aggregation indexes mainly highlight the nature of 

development of a particular class in the neighborhood. 

Clumpiness value of 1 indicates that the particular class is 

highly clumped in that region. Aggregation value close to 

100 indicates the same. If the value of IJI is not obtained it 

means to say that the patch types distinctly pound is less 

than three. All resolution output for all these metrics 

indicates that higher or better resolution is necessary to 

obtain appropriate result. Figure 3f, 3g and 3h 

corresponding to these spatial metrics indicate of improved 

results with the improvements in the spatial resolution. 
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Figure 3: Correlation of spatial Matrices with resolutions 

of the data  

 

Cohesion and Connect metrics measures the physical 

connectedness of the patches. It increases with increase in 

aggregation of among the patch type. Cohesion value of 

100 indicates the clumpiness or connectedness of the patch 

values close to 0 indicates highly unconnected fragmented 

landscape. Earlier as indicated the aggregation level in the 

considered image is quite high hence the cohesion values 

should be on its higher side. Connect value of 0 indicates 

that the considered area is becoming a single patch  and the 

values close to 100 indicates that every patch is highly 

connected and there are small fragmented patches. Figure 

3i and 3j indicate that these metrics are independent of 

resolutions used and gives almost similar results.  

 

Percentage of Like Adjacencies (PLADJ) calculated for the 

adjacency matrix indicates the frequency of different pairs 

of patch types occurring, measuring the degree of 

aggregation of the focal patch type. The values close to 0 

indicates maximally dispersed pattern and values close to 

100 indicates maximally contagious. Figure 3k highlight of 

dependence on spatial resolutions as lower resolution 

images fails to give an appropriate result. 

 

Normalized Landscape Shape Index (NLSI) indicates the 

shape of the landscape. Values close to 0 indicates that the 

landscape under study has simple shape means to say it is 

further aggregating to become a single patch. Values close 

to 1 indicates that the landscape has a complex shape. 

Figure 3l highlight that the regions are becoming a single 

patch of the simple size and independent of resolutions. 

 

7. Conclusion 
The study tested the behaviour and credibility of various 

landscape metrics for discriminating various landscape 

patterns and properties across various spatial resolutions. It 

reveals that the spatial resolution of the remote sensing 

data plays an important role in the landscape analysis. 

Exploration of landscape structure to understand the 

different landscape patterns for the analysis of composition 

reveal the dependency on spatial resolution of the data. The 

results reveal that landscape metrics based on patch (NP, 

PLADJ, AGGREGATION, IJI, CLUMPINESS) are 

sensitive to spatial resolution whereas metrics that are 

based on shape and neighbourhood (Cohesion, Connect, 

NLSI) are not sensitive and behave similarly across all 

resolutions. Comparison of the landscape metrics of 

various resolutions provides explicit knowledge of their 

sensitivity. Variations in landscape metrics with different 

spatial resolutions decide the effectiveness of the approach 

through spatial metrics used to analyze the landscape 

dynamics. Landscape metrics are apt indicators of land use 

development and environmental status and there is a need 

to incorporate these indices in spatial environment 

monitoring and information systems to achieve sustainable 

management of the natural resources. 
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Appendix 1 

 Indicators Formula Range Significance/ 

Description 

Category : Patch area metrics 

1 .  Percentage of 

Landscape 

(PLAND) 

 
Pi =     proportion of the landscape 

occupied by patch type (class) i. 

aij =     area (m
2
) of patch ij. 

A =     total landscape area (m
2
). 

 

0 < PLAND ≤ 

100 

 

PLAND is 0 when 

patch type (class) 

becomes 

increasingly rare in 

the landscape. 

PLAND = 100 with 

single patch type;  

2 .  Largest Patch 

Index(Percentage 

of landscape) 
 1 max( )
100

n

j ija
LPI

A


  

a ij = area (m
2
) of patch ij 

A= total landscape area 

0 ≤ LPI≤100 

 

LPI = 0 when 

largest patch of the 

patch type becomes 

increasingly 

smaller. LPI = 100 

when the entire 

landscape consists 

of a single patch  

3 .  Number of Urban 

Patches 
 N 

NP equals the number of patches in the 

landscape. 

NPU>0, without 

limit. 

Higher the value 

more the 

fragmentation 

4 .  Patch 

Density 

F (sample area) = (Patch Number/Area) 

* 1000000 

PD>0,without 

limit 

Patch density 

increases with a 

greater number of 

patches within a 

reference area. 

Category : Edge/border metrics 
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5. Area weighted 

mean patch fractal 

dimension 

(AWMPFD) 

1

1

2ln 0.25 / ln
i N

i i

i i

i N

i

i

p S
s

AWMPFD
N

s









 




 

Where si and pi are the area and perimeter 

of patch i, and N is the total number of 

patches 

1≤AWMPFD

≤2 

 

AWMPFD is 1 for 

shapes with very 

simple perimeters, such 

as circles or squares, 

and approaches 2 for 

shapes with highly 

convoluted perimeter  

6. Percentage of Like 

Adjacencies 

(PLADJ) 

 
gii =    number of like adjacencies (joins) 

between pixels of patch type 

(class) i based on the double-

count method. 

gik =    number of adjacencies (joins) 

between pixels of patch types 

(classes) i and k based on the 

double-count method. 

  

0<=PLADJ<

=100 

The percentage of cell 

adjacencies involving 

the corresponding 

patch type that are like 

adjacencies. Cell 

adjacencies are tallied 

using the double-count 

method in which pixel 

order is preserved, at 

least for all internal 

adjacencies 

7. Mean Patch Fractal 

Dimension 

(MPFD) 1 1

2ln(0.25 )

ln

m n

i j

pij

aij
MPFD

N

 

 
 
 





pij = perimeter of patch ij 

aij= area weighted mean of patch ij 

N =     total number of patches in the 

landscape 

1<=MPFD<2 Shape Complexity. 

MPFD approaches one 

for shapes with simple 

perimeters and 

approaches two when 

shapes are more 

complex. 

Category : Shape metrics 

8. NLSI(Normalized 

Landscape Shape 

Index) 

 

 

 

 

 

 

 

1
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


i N

i

i i

p

s
NLSI

N
 

 

Where si and pi are the area and perimeter 

of patch i, and N is the total number of 

patches. 

0≤NLSI<1 

 

NLSI = 0 when the 

landscape consists of 

single square or 

maximally compact 

almost square and is 1 

when the patch type is 

maximally 

disaggregated 

Category: Compactness/ contagion / dispersion metrics 

9. Clumpiness 
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-1≤ CLUMPY 

≤1 

 

 

 

. 

It equals 0 when the 

patches are distributed 

randomly, and 

approaches 1 when the 

patch type is 

maximally aggregated 
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gii =number of like adjacencies (joins) 

between pixels of patch type (class) I 

based on the double-count method. 

gik =number of adjacencies (joins) 

between pixels of patch types (classes) i 

and k based on the double-count method.  

min-ei =minimum perimeter (in number 

of cell surfaces) of patch type (class)i for 

a maximally clumped class. 

Pi =proportion of the landscape occupied 

by patch type (class) i. 

10. Aggregation 

index 
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max-gii = maximum number of like 

adjacencies (joins) between pixels of 

patch type class i based on single count 

method. 

Pi= proportion of landscape comprised of 

patch type (class) i. 

1≤AI≤100 

 

AI equals  1 when the 

patches are maximally 

disaggregated and 

equals 100 when the 

patches are maximally 

aggregated into a single 

compact patch. 

 

11. Interspersion 

and 

Juxtaposition 
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eik =  total length (m) of edge in 

landscape between patch types (classes) 

i and k. 

E = total length (m) of edge in landscape, 

excluding background 

m = number of patch types (classes) 

present in the landscape, including the 

landscape border. 

0≤ IJI ≤100 IJI is a measure of  

patch adjacency.  IJI 

approach 0 when 

distribution of 

adjacencies among 

unique patch types 

becomes uneven; is 

equal to 100 when all 

patch types are equally 

adjacent to all other 

patch types. 

12. Cohesion 

 

0≤cohesion<100 Patch cohesion index 

measures the physical 

connectedness of the 

corresponding patch 

type. 

13. Built up Area ------ >0 Total built-up land (in 

ha) 

 


