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ABSTRACT 
This paper studies the statistical behavior of an 

affine combination of the outputs of two least 

mean-square(LMS) adaptive filters that 

simultaneously adapt using the same white 

Gaussian inputs. The purpose to combine two 

filters is to obtain a new LMS adaptive filter with 

fast convergence and small steady-state mean-

square deviation (MSD).  The combination factor 

λ(n) is optimized which minimizes the mean-

square error (MSE) and gives good steady state 

response. Here Two schemes proposed to find out 

the optimal mixing parameter to get optimized 

sequence λ(n)  are  stochastic gradient search 

method and error power based scheme. By using 

this affine combination, we can cancel the echo 

signal with high convergence speed.  

Keywords - Adaptive filters, affine combination, 

convex combination, least mean square, step size, 

stochastic algorithms, affine combination 

I. INTRODUCTION 
The common problem in designing adaptive filters is 

to overcome the trade- off between the convergence 

speed and final misadjustment, i.e faster converging 

filter gives large steady state deviation and slowly 

converging filter gives small deviation from steady -

state value. This trade off can be controlled by this 

affine combination. 

 

Fig.1 Adaptive combining of two transversal adaptive 

filters 

 

In this scheme where adaptive filter W1(n) uses a 

larger step size than adaptive filterW2(n) . The main 

goal is the selection of the scalar mixing parameter 

λ(n) for combining the two filter outputs. The mixing 

parameter is defined as a sigmoid function whose 

free parameter is adaptively optimized using a 

stochastic gradient search which minimizes the 

quadratic error of the overall filter, which leads to an 

optimal affine sequence λ 0  (n).  
 

Finally, two realizable schemes for updating λ(n) are 

proposed. The first scheme is based on a stochastic 

gradient approximation. The second scheme is based 

on the relative values of averaged estimates of the 

individual error powers. Both schemes are briefly 

studied, and their support the theoretical findings and 

show that the analysis performances are compared to 

that of the optimal affine combiner. Finally we apply 

this scheme to the echo cancellation 

II. OPTIMAL AFFINE COMBINER 
The affine combination is shown in Fig. 1. Each filter 

uses the LMS adaptation rule but with different step 

sizes μ1 and μ2 

Wi (n+1) = Wi(n) + μiei(n)U(n)                                           

(1) 

 

Where  

ei(n) = d(n) –Wi
T
(n)U(n)                                                    

(2)  

d(n) = e0(n) + w0
T
U(n)                                                        

(3) 

where Wi(n),i=1, 2 are the N-dimensional adaptive 

coefficient vectors, is assumed zero-mean,and 

statistically independent of any other signal in the 

system . Ui(n)is the input vector. It will be assumed, 

without loss, that μ1 > μ2 , so that will, in general, 

W1(n) converges faster than W2(n). Also, W2(n) will 

converge to the lowest individual steady-state weight 

misadjustment. The weight vectors W1(n) and W2(n) 

are coupled both deterministically and statistically 

through and U(n) and e0(n). 

          The outputs of the two filters are combined as 

in Fig.1 
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Y(n) = λ(n)y1(n) +[1-λ(n)] y2(n)                                       

(4) 

 

Where  Yi(n)= Wi
T
(n)U(n) i=1,2  and  over all system 

error is 

e(n) = d(n)- y(n)                                                                

(5) 

Equation (4) can be re –written as 

Y(n) = λ(n) W1
T
(n) U(n) + [1-λ(n)] W2

T
(n) U(n) 

 = {λ(n) [w1(n) – w2 (n)] + w2(n)}
T
U(n) 

        = {λ(n) w12 (n) + w2 (n)}
T
 U(n)                                  

(6) 

where W12(n)= W1(n)- W2(n) 

Equation 6 shows that y(n) can be interpreted as a 

combination of  W2(n) and a weighted version of the 

difference filter W12(n).. It also shows that the 

combined adaptive filter has an equivalent weight 

vector given by 

weq   =  λ(n ) w12 (n) + w2(n)                                                

(7) 

Subtracting (1) for i=2 from (1) for yields a recursion 

for    w12(n+1) =  

 [I – μ1U(n)U
T
(n)] w12   +  (μ1 – μ2)e2(n)U(n)                       

(8) 

A rule to find λ, which minimizes MSE 

e(n) = e0(n) + [w02(n) – λ(n)w12(n)]
T
U(n)                         

(9) 

    = -2E [e(n)w12
T
(n)U(n)/w2(n),w12(n)]= 0                   

(10)              

[w02 (n) – λ(n)w12(n)] 
T 

Ru w12(n) = 0                             

(11) 

λ0(n) =  w02
T
(n)Ruw12(n)/w12

T
(n)Ruw12(n)                 

(12) 

which is the expression for the optimum affine 

combiner , as a function of unknown system 

response. 

III. ITERATIVE ALGORITHMS TO 

ADJUST AFFINE COMBINER 
The previous derivation of the optimal linear 

combiner was based upon prior knowledge of the 

unknown system response.. Clearly, this is not the 

case in reality. However, the theoretical model and its 

derived properties can be used to upper bound the 

performance of practical algorithms for adjusting 

without such knowledge. Algorithms that yield close-

to-optimal performance for typical unknown 

responses can be considered as good candidates for 

practical applications. 

Performance close to the optimal suggests that further 

analytical study of a new algorithm could be worth 

the effort. This is especially important for the 

adaptive combiner structure. There are two 

algorithms for the adjustment of optimal affine 

combiner λ . The first algorithm is based   upon a 

stochastic gradient search for the optimal . The 

second is based on the ratio of the average error 

powers from each individual adaptive filter. The 

performances of these algorithms are then compared 

to optimal performance 

 

 

Fig2: Unknown System Response 

 

3.1 Stochastic Gradient Approach: 

Consider a stochastic gradient search to estimate the 

optimum instantaneous value of λ. The stochastic gradient 

algorithm to update λ is 

λ (n+1) = λ1(n)  +   

μλ[d(n)n – w12
T(n)U(n)]w12

T(n)U(n)            (13)  

w12(n) = λ1(n)w1(n) = [1 -  λ1(n)]w2(n)   (14)   

Equation (13) is a linear first order stochastic time-

varying recursion in the scalar parameter λ1(n)  . The 
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stochastic behavior of this recursion has been 

analyzed .The accuracy of the theoretical analysis 

and the performance of the proposed algorithm for 

adjusting λ1(n) are evaluated here. Appropriate values 

of  μ λ were chosen so that the algorithm was able to 

track  

The stochastic gradient algorithm requires a good 

estimate of the noise power to reasonably select and 

mildly constrain in recursion (13). The accuracy of 

this estimate could limit the usefulness of the 

stochastic gradient algorithm for some applications. 

A different scheme for choosing , based on the 

average error powers of the two filters is proposed. 
 

Fig3 : System Identification using Affine LMS of 

Stochastic Gradient Approach 

 

 MSE of affine combination is always less than either 

LMS1 and LMS2.This behavior is expected from an 

optimal combiner and verified . These curves 

represent the best performance that could be obtained 

using two LMS 
 

3.2 Error Power Based Scheme: 
A function of time averaged error powers could be a 

good candidate for an estimator of the optimum λ(n) 

for each n . The individual adaptive error powers are 

good indicators of the contribution of each adaptive 

output to the quality of the present estimation of  

d(n). These errors are readily available and do not 

need an estimate of the additive noise power. 

Consider a uniform sliding time average of the 

instantaneous Errors 

e1
2
(n) = 1/k Σm-n-k+1

n
   e1

2
(m)                        (15) 

e2
2
(n) = 1/k Σm-n-k+1

n
e2

2
(m)                           (16) 

where is the averaging window. Then, consider the 

instantaneous value of  λ(n) determined as 

λ2(n) = 1- kerf  (e1
2
(n)/e2

2
(n))                       (17) 

erf(x) = 2/√π ∫0
x 
 e

-t2/2
 dt                                (18) 

Fig shows the behaviors of using error power based 

scheme to update affine combiner and MSE of 

individual and combined. These results clearly show 

that the proposed algorithm leads to a very good 

practical implementation of the linear combiner.  
 

 

Fig 4.:  System identification using error power based 

scheme 
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4. ECHO CANCELLATION SIMULATION 

& RESULTS: 

 

 

 

 

 

 

 

 

 

 

 

    Fig 5: flow chart for echo cancellation procedure 

4.1 Description of the Simulation Setup 
This section describes the simulation environment, its 

requirements and the procedures adopted. 

1. The input signals, both far-end and near-end 

signals, were simulated and given to the AEC, which 

executed on a PC with the MATLAB environment. 

 2. The input signals seven seconds in duration. 

3. A sampling rate of 8000 Hz was used for all the 

signals in the simulation. 

4. The graphs plotted have x-axes denoting the time 

and y-axes denoting the amplitude or magnitude of 

the signal. 

 

 

 

4.2. Results: 

Fig 6 : Room Impulse Response 

This figure shows a typical room impulse response. 

Each coefficient adds certain delay to the input. This 

is echoed output of input speech. Impulse response of 

two artificially generated echo channels, the first 

being a dispersive channel with 256 active 

coefficients, and the second being strongly sparse, 

with only 16 active coefficients. The far-end signal 

was delayed and scaled in order to produce the echo 

signal, r(n), which is presented in Figure 6. The echo 

signal was produced when the far-end signal, x(n), 

passed through the echo path, h. The echo signal was 

added to the near-end signal, v(n), in order to produce 

the desired signal, d(n), which became the input for 

the  adaptive filter. The plot of the near end signal, 

v(n), and the plot of the desired signal, d(n). is 

presented in Fig 7. 

Various parameters for the algorithm such as the 

convergence factor, no of iterations should be 

initialized. Additionally, the length of the filter had to 

be established beforehand. The values of these 

parameters, which were used in the simulation, are 

Length of the filter, N = 2048 

Convergence factor, µ= 005. This value was found to 

produce faster convergence of the NLMS algorithm. 

A small constant, δ= 0.9 

Start 

Subtract Estimated Echo 
from desired signal 

Get Near  
End Signal v(n) 

Update Filter 
coefficients 

Combine r(n) and v(n) 
This is desired Signal 

Get echoed 
Far End Signal 

r(n) 

No. of 

Itr> N 

Get Far-End 
Signal x(n) 

Filter 
Coeffs 

are Frozen 

Yes 

No 
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Fig 7: far ended echoed speech signal 

  Fig 8: Near end &Output signal of echo canceller 

 

4.3Evaluation of Echo cancellation 

algorithm: 

    In order to evaluate the effective working of the 

algorithm, some basic tests were conducted. This 

section provides a brief account of these tests. 

4.3.1 Convergence Test 
   The first and paramount test of the algorithm was 

whether or not the algorithm converged. Here a 

sparse room impulse response is considered for 

simulation. It is derived by assuming room impulse 

response is a band pass filter. First, adaptive 

algorithm is used to identify the room impulse 

response. Using this room impulse response, Echo 

generated within the room is estimated and subtracted 

from the output of room. Hence, Echo cancellation is 

performed. As more no. of iterations are considered, 

identification of room impulse response becomes 

more accurate and echo cancellation is performed 

better. The mean square error is found between 

original signal and echo cancelled signal. As more no 

of iterations, less is the error. 

 

 

 
Fig 9:  Sparse Echo path used for simulation 

 

4.3.2 Auditory Test 
The last test consisted of listening to the output for 

appropriate cancellation of echoes. The audio of the 

output signals was presented to a panel of five 

members with no technical expertise in this field. The 

panel was almost not able to distinguish the near end 

signal, v(n), and the output signal with the residual 

echo, e(n), removed. Some discrepancies in the audio 

could be attributed to the fact that the real-time 

applications cannot escape the factor called noise. 
 

6. CONCLUSIONS AND FUTURE SCOPE 
. One of the major problems in a telecommunication 

application over a telephone system is echo. The 

Echo cancellation algorithm presented in this thesis 

successfully attempted to find a software solution for 

the problem of echoes in the telecommunications 

environment. The proposed algorithm was 

completely a software approach without utilizing any 

DSP hardware components. The algorithm was 

capable of running in any PC with MATLAB 

software installed. 

    The algorithm proposed in this thesis presents a 

solution for single channel acoustic echoes. However, 

most often in real life situations, multichannel sound 

is the norm for telecommunication. For example, 

when there is a group of people in a teleconference 

environment and everybody is busy talking, laughing 

or just communicating with each other multichannel 

sound abounds. Since there is just a single 

microphone the other end will hear just a highly 

incoherent monographic sound. In order to handle 

such situations in a better way the echo cancellation 

algorithm developed during this research should be 

extended for the multichannel case 
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