
J.RaviTeja, V.Ramakrishna / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp. 214-220

214 | P a g e

Frameworks for Network Intrusion Detection Systems: Wired and

Wireless

J.RaviTeja
M.Tech, Student,

Department of Computer Science, K L University, Guntur.

V.Ramakrishna
M.Tech, Associate Professor,

Department of Computer Science, K L University, Guntur.

---ABSTRACT---

 An intrusion can be defined as ―any set of actions that attempt to compromise the integrity, confidentiality, or availability

of a resource‖. Intrusion prevention techniques, such as user authentication (e.g., using passwords or biometrics), avoiding

programming errors, and information protection (e.g., encryption) have been used to protect computer systems as a first line

of defense. The NetSTAT system was a network-based intrusion detection system. NetSTAT extended the state transition

analysis technique (STAT) to network-based intrusion detection in order to represent attack scenarios in a networked

environment. The NetSTAT approach models network attacks as state transition diagrams, where states and transitions are

characterized in a networked environment. A NIDS can detect many types of events, from benign to malicious.

Reconnaissance events alone are not dangerous, but can lead to dangerous attacks.

Keywords–Intrusiondetection,Networktap,NetworkSecurity,Sensors,Spanningport

I. INTRODUCTION
As network-based computer systems play increasingly

vital roles in modern society, they have become the targets

of our enemies and criminals. Therefore, we need to find

the best ways possible to protect our systems. The security

of a computer system is compromised when an intrusion

takes place. An intrusion can thus be defined as ―any set of

actions that attempt to compromise the integrity,

confidentiality, or availability of a resource‖ [Heady et al.,

1990]. Intrusion prevention techniques, such as user

authentication (e.g., using passwords or biometrics),

avoiding programming errors, and information protection

(e.g., encryption) have been used to protect computer

systems as a first line of defense. Intrusion prevention alone

is not sufficient because as systems become ever more

complex, there are always exploitable weaknesses in the

systems due to design and programming errors, or various

―socially engineered‖ penetration techniques For example,

after it was first reported many years ago, exploitable

―buffer overflow‖ still exists in some recent system

softwares due to programming errors. The policies that

balance convenience versus strict control of a system and

information access also make it impossible for an

operational system to be completely secure. Intrusion

detection is therefore needed as another wall to protect

computer systems. The primary assumptions of intrusion

detection are: user and program activities are observable,

for example, via system auditing mechanisms; and more

importantly, normal and intrusion activities have distinct

behavior. Intrusion detection therefore includes these

essential elements:

 Resources to be protected in a target system, for

example, network services, user accounts, system

kernels, etc.

 Models that characterize the ―normal‖ or

―legitimate‖ behavior of the activities involving

these resources;

 Techniques that compare the observed activities

with the established models. The activities that are

not ―normal‖ are flagged as ―intrusive‖.[1]

Currently, building effective IDS is an enormous

knowledge engineering task. System builders rely on their

intuition and experience to select the statistical measures for

anomaly detection [Lunt, 1993]. Experts first analyze and

categorize attack scenarios and system vulnerabilities, and

hand-code the corresponding rules and patterns for misuse

detection. Because of the manual and ad hoc nature of the

development process, current IDSs have limited

extensibility and adaptability.

II. Network Intrusion Detection Systems

A. Component Types

 Two main component types comprise a NIDS:

appliance and software only. A NIDS appliance is a piece

of dedicated hardware: its only function is to be IDS. The

operating system (OS), software, and the network interface

cards (NIC) are included in the appliance. The second

component type, software only, contains all the IDS

software and sometimes the OS; however, the user provides

the hardware. Software-only NIDSs are often less

expensive than appliance-based NIDS because they do not

provide the hardware; however, more configuration is

required, and hardware compatibility issues may arise. With

an IDS, the ―system‖ component is vital to efficiency. Often

a NIDS is not comprised of one device but of several

physically separated components. Even in a less

complicated NIDS, all components may be present but may

be contained in one device. The NIDS is usually made of

J.RaviTeja, V.Ramakrishna / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp. 214-220

215 | P a g e

components identified, but more specifically, the physical

components usually include the sensor, management sever,

database server, and console—

Sensor—the sensor or agent is the NIDS component that

sees network traffic and can make decisions regarding

whether the traffic is malicious. Multiple sensors are

usually placed at specific points around a network, and the

location of the sensors is important. Connections to the

network could be at firewalls, switches, routers, or other

places at which the network divides.

Management server—as the analyzer, a management

server is a central location for all sensors to send their

results. Management servers often connect to sensors via a

management network; for security reasons, they often

separate from the remainder of the network. The

management server will make decisions based on what the

sensor reports. It can also correlate information from

several sensors and make decisions based on specific traffic

in different locations on the network.

Database server—Database servers are the storage

components of the NIDS. From these servers, events from

sensors and correlated data from management servers can

be logged. Databases are used because of their large storage

space and performance qualities.

Console—as the user interface of the NIDS, the console is

the portion of the NIDS at which the administrator can log

into and configure the NIDS or to monitor its status. The

console can be installed as either a local program on the

administrator’s computer or a secure Web application

portal. Traffic between the components must be secure and

should travel between each component unchanged and

unviewed. Intercepted traffic could allow a hacker to

change the way in which a network views an intrusion.

B. NIDS Sensor Placement

Because a sensor is the portion of the NIDS that

views network traffic, its placement is important for

detecting proper traffic. Figure 2 offers an example of how

to place a NIDS sensor and other components. There are

several ways to connect a NIDS sensor to the network—

Inline—an inline NIDS sensor is placed between two

network devices, such as a router and a firewall. This means

that all traffic between the two devices must travel through

the sensor, guaranteeing that the sensor can analyze the

traffic. An inline sensor of an IDS can be used to disallow

traffic through the sensor that has been deemed malicious.

Inline sensors are often placed between the secure side of

the firewall and the remainder of the internal network so

that it has less traffic to analyze.

Passive—a passive sensor analyzes traffic that has been

copied from the network versus traffic that passes through

it. The copied traffic can come from numerous places—

Spanning port—Switches often allow all traffic on the

switch to be copied to one port, called a spanning port.

During times of low network load, this is an easy way to

view all traffic on a switch; however, as the load increases,

the switch may not be able to copy all traffic. Also, if the

switch deems the traffic malformed, it may not copy the

traffic at all; the malformed traffic that may be the type the

NIDS sensor must analyze.

Network tap—a network tap copies traffic at the physical

layer. Network taps are commonly used in fiber-optic

cables in which the network tap is inline and copies the

signal without lowering the amount of light to an unusable

level. Because network taps connect directly to the media,

problems with a network tap can disable an entire

connection.[2]

C. Types of Events

A NIDS can detect many types of events, from

benign to malicious. Reconnaissance events alone are not

dangerous, but can lead to dangerous attacks.

Reconnaissance events can originate at the TCP layer, such

as a port scan. Running services have open ports to allow

legitimate connections. During a port scan, an attacker tries

to open connections on every port of a server to determine

which services are running. Reconnaissance attacks also

include opening connections of known applications, such as

Web servers, to gather information about the server’s OS

and version. NIDS can also detect attacks at the network,

transport, or application layers. These attacks include

malicious code that could be used for denial of service

(DoS) attacks and for theft of information. Lastly, NIDS

can be used to detected less dangerous but nonetheless

unwanted traffic, such as unexpected services (i.e.,

backdoors) and policy violations.[3]

Figure 1: NIDS placement

D. Prevention

Although the detection portion of an IDS is the

most complicated, the IDS goal is to make the network

more secure, and the prevention portion of the IDS must

accomplish that effort. After malicious or unwanted traffic

is identified, using prevention techniques can stop it. When

an IDS is placed in an inline configuration, all traffic must

travel through an IDS sensor. When traffic is determined to

be unwanted, the IDS does not forward the traffic to the

remainder of the network. To be effective, however, this

effort requires that all traffic pass through the sensor. When

an IDS is not configured in an inline configuration, it must

end the malicious session by sending a reset packet to the

network. Sometimes the attack can happen before the

J.RaviTeja, V.Ramakrishna / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp. 214-220

216 | P a g e

IDS can reset the connection. In addition, the action of

ending connections works only on TCP, not on UDP or

internet control message protocol (ICMP) connections. A

more sophisticated approach to IPS is to reconfigure

network devices (e.g., firewalls, switches, and routers) to

react to the traffic. Virtual local area networks (VLAN) can

be configured to quarantine traffic and limit its connections

to other resources.[4]

III. THE NETSTAT SYSTEM

The NetSTAT system was a network-based intrusion

detection system. NetSTAT extended the state transition

analysis technique (STAT) to network-based intrusion

detection in order to represent attack scenarios in a

networked environment. However, unlike other network-

based intrusion detection systems that monitored a single

sub-network for patterns representing malicious activity,

NetSTAT was oriented towards the detection of attacks in

complex networks composed of several sub-networks. In

this setting, the messages that are produced during an

intrusion attempt may be recognized as malicious only in

particular subparts of the network, depending on the

network topology and service configuration. As a

consequence, intrusions cannot be detected by a single

component, and a distributed approach is needed. The

NetSTAT approach models network attacks as state

transition diagrams, where states and transitions are

characterized in a networked environment. The network

environment itself is described by using a formal model

based on hypergraphs. The analysis of the attack scenarios

and the network formal descriptions determines which

events have to be monitored to detect an intrusion and

where the monitors need to be placed. In addition, by

characterizing in a formal way both the configuration and

the state of a network it is possible to provide the

components responsible for intrusion detection with all the

information they need to perform their task autonomously

with minimal interaction and traffic overhead. This can be

achieved because network-based state transition diagrams

contain references to the network topology and service

configuration.

A. Architecture

NetSTAT is a distributed application composed of the

following components: the network fact base, the state

transition scenario database, a collection of general-purpose

probes, and the analyzer. A high-level view of the

NetSTAT architecture is given in Figure 2.

A.1 Network Fact Base

The network fact base component stores and manages the

security-relevant information about a network. The fact

base is a stand-alone application that is used by the

Network Security Officer to construct, insert, and browse

the data about the network being protected. It contains

information about the network topology and the network

services provided. The network topology is a description of

the constituent components of the network and how they are

connected. The network model underlying the NetSTAT

tool uses interfaces, hosts, and links as primitive elements.

A network is represented as a hyper graph on the set of

interfaces. In this model, interfaces are nodes while hosts

and links are edges; that is, hosts and links are modeled as

sets of interfaces. This is an original approach that has a

number of advantages. Because the model is formal, it

provides a well defined semantics and supports reasoning

and automation.[5]

Figure 2: The NetSTAT architecture.

Another advantage is that this formalization allows one

to model network links based on a shared medium (e.g.,

Ethernet) in a natural way, by representing the shared

medium as a set containing all the interfaces that can access

the communication bus. In this way, it is possible to

precisely model the concept of network traffic

eavesdropping, which is the basis for a number of network-

related attacks. In addition, topological properties can be

described in a simple way since hosts and links are treated

uniformly as edges of the hypergraph. The network model

is not limited to the description of the connection of

elements. Each element of the model has some associated

information. For example, hosts have several attributes that

characterize the type of hardware and operating system

software installed. The network services portion of the

network fact base contains a description of the services

provided by the hosts of a network. Examples of these

services are the Network File System (NFS), the Network

Information System (NIS), TELNET, FTP, ―r‖ services,

etc. The fact base contains a characterization of each

service in terms of the network/transport protocol(s) used,

the access model (e.g., request/reply), the type of

authentication (e.g., address-based, password- based, token-

based, or certificate-based), and the level of traffic

protection (e.g., encrypted or not). In addition, the network

fact base contains information about how services are

deployed, that is, how services are instantiated and accessed

over the network.

Figure 3 shows an example network. In the hypergraph

describing the network, interfaces are represented as black

dots, hosts are represented as circles around the

corresponding interfaces, and links are represented as lines

connecting the interfaces. The sample network is composed

of five links, namely L1, L2, L3, L4, and L5, and twelve

J.RaviTeja, V.Ramakrishna / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp. 214-220

217 | P a g e

hosts. Here in after, it is assumed that each interface has a

single associated IP address, for example interface i7 is

associated with IP address a7.

Figure 3: An example network.
The outside network is modeled as a composite host (the

double circle in the figure) containing all the interfaces and

corresponding addresses not in use elsewhere in the

modeled network. As far as services are concerned, host

Fellini is an NFS server exporting file systems /home and

/fs to kubrick and wood. In addition, Fellini is a TELNET

server for everybody. Host jackson exports an rlogin

service to hosts carpenter and lang.[6]

A.2 State Transition Scenario Database

The state transition scenario database is the component

that manages the set of state transition representations of

the intrusion scenarios to be detected. The state transition

analysis technique was originally developed to model host-

based intrusions. It describes computer penetrations as

sequences of actions that an attacker performs to

compromise the security of a computer system. Attacks are

(graphically) described by using state transition diagrams.

States represent snapshots of a system’s volatile, semi-

permanent, and permanent memory locations. A description

of an attack has a ―safe‖ starting state, zero or more

intermediate states, and (at least) one ―compromised‖

ending state. States are characterized by means of

assertions, which are functions with zero or more arguments

returning Boolean values. For NetSTAT the original STAT

technique has been applied to computer networks, and the

concepts of state, assertions, and signature actions have

been characterized in a networked environment.

States and Assertions.

In network-based state transition analysis the state

includes the currently active connections (for connection

oriented services), the state of interactions (for

connectionless services), and the values of the network

tables (e.g., routing tables, DNS mappings, ARP caches,

etc). For instance, both an open connection and a mounted

file system are part of the state of the network. A pending

DNS request that has not yet been answered is also part of

the state, such as the mapping between IP address

128.111.12.13 and the name hitchcock. For the application

of state transition analysis to networks the original state

transition analysis concept of assertion has been extended

to include both static assertions and dynamic assertions.

Static assertions are assertions on a network that can be

verified by examining the network fact base; that is, by

examining its topology and the current service

configuration.

For example, the following assertion:

service s in server.services|

s.name == "www" and

s.application.name == "CERN httpd";

identifies a service s in the set of services provided by host

server such that the name of the service is www and the

application providing the service is the CERN http

daemon1.

As another example, the following assertion:

Interface i in gateway.interfaces|

i.link.type == "Ethernet";

denotes an interface of a host, say gateway, that is

connected to an Ethernet link.

These assertions are used to customize state transition

representations for particular scenarios (e.g., a particular

server and its clients). In practice, they are used to

determine the amount of knowledge about the network fact

base that each probe must be provided with during

configuration procedures.

Dynamic assertions can be verified only by examining

the current state of the network. One examples is NFS

Mounted(filesys, server, client), which returns true if the

specified file system exported by server is currently

mounted by client. Another example is

ConnectionEstablished(addr1, port1, addr2, port2), which

returns true if there is an established virtual circuit between

the specified addresses and ports. These assertions are used

to determine what relevant network state events should be

monitored by a network probe.[7]

Transitions and Signature Actions.

In NetSTAT, signature actions are expressed by

leveraging an event model. In this model, events are

sequences of messages exchanged over a network. The

basic event is the link-level message, or message for short.

A link-level message is a string of bits that appears on a

network link at a specified time. The message is exchanged

between two directly-connected interfaces. For example the

signature action:

Message m {i_x,i_y}|

m.length > 512;

represents a link-level message exchanged between

interfaces i_x and i_y whose size is greater than 512 bytes.

Basic events can be abstracted or composed to represent

higher-level actions. For example, IP datagrams that are

transported from one interface to another in an IP network

are modeled as sequences of link-level messages that

represent the intermediate steps in the delivery process.

Note that the only directly observable events are link-level

messages appearing on specific links. Therefore, the IP

J.RaviTeja, V.Ramakrishna / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp. 214-220

218 | P a g e

datagram ―event‖ is observable by looking at the payload of

one of the link-level messages used to deliver the datagram.

For example, the signature action:

Message m in [IP Datagram d]{i_x, i_y}|

m.dst != i_y;

represents a link-level message used during the delivery of

an IP datagram such that the link-level destination address

is not the final destination interface (i.e., the message is not

the last one in the delivery process). Events representing

single UDP datagrams or TCP segments are represented by

specifying encapsulation in an IP datagram.

In the TCP virtual circuit case, application-level events

are extracted by parsing the stream of bytes exchanged over

the virtual circuit. The type of application event determines

the protocol used to interpret the stream. For example, the

following signature action:

[c.streamToServer [HTTPRequest r]]|

r.method == "GET";

is an HTTP GET request that is transmitted over a TCP

virtual circuit (defined somewhere else as c), through the

stream directed to the server side2.[8]

A.3 Probes

The probes are the active intrusion detection

components. They monitor the network traffic in specific

parts of the network, following the configuration they

receive at startup from the analyzer, which is described in

the following section. Probes are general-purpose intrusion

detection systems that can be configured remotely and

dynamically following any changes in the modeled attacks

or in the implemented security policy. Each probe has the

structure shown in Figure 4.

The filter module is responsible for filtering the network

message stream. Its main task is to select those messages

that contribute to signature actions or dynamic assertions

used in a state transition scenario from among the huge

number of messages transmitted over a network link. The

filter module can be configured remotely by the analyzer.

Its configuration can also be updated at run-time to reflect

new attack scenarios, or changes in the network

configuration.

The performance of the filter is of paramount

importance, because it has strict real-time constraints for

the process of selecting the events that have to be delivered

to the inference engine. In the current prototype the filter is

implemented using the BSD Packet Filter and a modified

version of the tcp dump application

Figure 4: Probe architecture.

. The inference engine is the actual intrusion detecting

system. This module is initialized by the analyzer with a set

of state transition information representing attack scenarios

(or parts thereof). These attack scenarios are codified in a

structure called the inference engine table. At any point

during the probe execution, this table consists of snapshots

of penetration scenario instances (instantiations), which are

not yet completed. Each entry contains information about

the history of the instantiation, such as the address and

services involved, the time of the attack, and so on. On the

basis of the current active attacks, the event stream

provided by the filter is interpreted looking for further

evidence of an occurring attack. Evolution of the inference

engine state is monitored by the decision engine, which is

responsible for taking actions based on the outcomes of the

inference engine analysis. Some possible actions include

informing the Network Security Officer of successful or

failed intrusion attempts, alerting the Network Security

Officer during the first phases of particularly critical

scenarios, suggesting possible actions that can preempt a

state transition leading to a compromised state, or playing

an active role in protecting the network (e.g., by injecting

modified datagrams that reset network connections.)

Probes are autonomous intrusion detection components.

If a single probe is able to detect all the steps involved in an

attack then the probe does not need to interact with any

other probe or with the analyzer. Interaction is needed

whenever different parts of an intrusion can be detected

only by probes monitoring different subparts of the

network. In this case, it is the analyzer’s task to decompose

an intrusion scenario into sub-scenarios such that each can

be detected by a single probe. The decision engine

procedures associated with these scenarios are configured

so that when part of a scenario is detected, an event is sent

to the probes that are in charge of detecting the other parts

of the overall attack. This simple form of forward chaining

J.RaviTeja, V.Ramakrishna / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp. 214-220

219 | P a g e

allows one to detect attacks that involve different (possibly

distant) sub-networks.[9]

A.4 Analyzer

The analyzer is used to analyze and instrument a network

for the detection of a number of selected attacks. It takes as

input the network fact base and a state transition scenario

database and determines:

• which events have to be monitored; only the events that

are relevant to the modeled intrusions must be detected;

• where the events need to be monitored;

• what information about the topology of the network is

required to perform detection;

• what information must be maintained about the state of the

network in order to be able to verify state assertions.

Thus, the analyzer component acts as a probe generator

that customizes a number of general-purpose probes using

an automated process based on a formal description of the

network to be protected and of the attacks to be detected.

This information takes the form of a set of probe

configurations. Each probe configuration specifies the

positioning of a probe, the set of events to be monitored,

and a description of the intrusions that the probe should

detect. These intrusion scenarios are customized for the

particular sub-network the probe is monitoring, which

focuses the scanning and reduces the overhead. The

network fact base and the state transition scenario database

components are used as internal modules for the selection

and presentation of a particular network and a selected set

of state transition scenarios. The analysis engine uses the

data contained in the network fact base and the state

transition scenario database to customize the selected

attacks for the particular network under exam. For example,

if one scenario describes an attack that exploits the trust

relationship between a server and a client, that scenario will

be customized for every client/server pair that satisfies the

specified trust relationship3. [10]

Once the attack scenarios contained in the state transition

scenario database have been customized over the given

network, another module, called the configuration builder,

translates the results of the analysis engine to produce the

configurations to be sent to the different probes. Each

configuration contains a filter configuration, a set of state

transition information, and the corresponding decision

tables to customize the probe’s decision engine.

IV. Wireless

 Wireless technologies have become so popular, and with

the nature of wireless Communication blurring the borders

between networks, special consideration is required. A

wireless IDS is similar to an NIDS because the same types

of network-based attacks can occur on wireless networks.

However, because WLANs have other functionality and

vulnerabilities, a WLAN IDS must monitor for network-

based attacks as well as wireless specific attacks.

For WLANs, Wireless sensors may be standalone

devices that are used to monitor all wireless traffic but

without forwarding the traffic. Sensors may also be built

into wireless APs to monitor traffic as it connects to the

wired network. The location of a WLAN sensor is

important because its physical location affects what a

sensor can monitor. A sensor should be able to monitor

traffic from devices that can connect to the wireless

network. (See Figure 5.) This could involve having several

sensors that extend past the normal field of operations.

WLAN devices operate on one channel at a time, but can

choose from several. Consequently, a WLAN sensor can

listen on only one channel at a time. Sensors can listen to

either one channel or to several channels by changing them

periodically, as one would change channels on a television.

Several sensors may be used for listening to several

channels at once.

Figure 5: WLAN IDS placement
A. Components

A wireless IDS contains several components, such

as sensors, management logging databases, and consoles, as

does a NIDS. Wireless IDSs are unique in that they can be

run centralized or decentralized. In centralized systems, the

data is correlated at a central location and decisions and

actions are made based on that data. In decentralized

systems, decisions are

made at the sensor.[11]

CONCLUSION

Intrusion detection and prevention systems are important

parts of a well-rounded security infrastructure. IDSs are

used in conjunction with other technologies (e.g., firewalls

and routers), are part of procedures (e.g., log reviews), and

help enforce policies. Each of the IDS technologies—

NIDS, WLAN IDS and NETSTAT—are used together,

correlating data from each device and making decisions

based on what each type of IDS can monitor.

This ―re-invention‖ of network intrusion detection

techniques and approaches shows how intrusion detection

(be it network-based, web-based, or host-based) is still an

important research problem. As new attacks and new ways

of compromising systems are introduced, both researchers

J.RaviTeja, V.Ramakrishna / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp. 214-220

220 | P a g e

and practitioners will develop (or re-discover) techniques

for the analysis of events that allow for the identification of

the manifestation of malicious activity.

REFERENCES
1. Intrusion Detection Systems Information Assurance

Tool Report, Sixth edition sep-25, 2009.

2. Allen, Julia; Christie, Alan; Fithen, William; McHugh,

John; Pickel, Jed; Stoner, Ed. State of the Practice of

Intrusion Detection Technologies. Pittsburg, PA:

Carnegie Mellon Software Engineering Institute,

January 2000

3. Base, Rebecca & Mell, Peter (2001). SP 800-31,

Intrusion Detection Systems. Washington, DC:

National Institute of Standards and Technology.

4. Giovanni Vigna Network Intrusion Detection: Dead or

Alive? Department of Computer Science University of

California, Santa Barbara

5. Kent, Karen & Mell, Peter (2006). SP 800-94, Guide

to Intrusion Detection and Prevention (IDP) Systems

(DRAFT). Washington, DC: National Institute of

Standards and Technology.

6. Kent, Karen & Warnock, Matthew (2004). Intrusion

Detection Tools Report, 4th Edition. Herndon, VA:

Information Assurance Technology Analysis Center

(IATAC).

7. C. Berge. Hypergraphs. North-Holland, 1989. S.

Eckmann, G. Vigna, and R. Kemmerer. STATL: An

Attack Language for State-based Intrusion Detection.

Journal of Computer Security, 10(1,2):71–104, 2002.

8. G. Vigna. A Topological Characterization of TCP/IP

Security. In Proceedings of the 12th International

Symposium of Formal Methods Europe (FME ’03),

number 2805 in LNCS, pages 914–940, Pisa, Italy,

September 2003. Springer-Verlag.

9. P. Porras. STAT – A State Transition Analysis Tool for

Intrusion Detection. Master’s thesis, Computer Science

Department, University of California, Santa Barbara,

June 1992.

10. Low, Christopher (2005). Understanding wireless

attacks & detection. Bethesda, MD: The SANS

Institute, Global Information Assurance Certification

(GIAC) Security Essentials.

11. Thomas, Duncan. http://compm067.paisley.ac.uk/

notes/unit01.html. ICT, Paisley University, 1999–2003.

Biographies

First Author:

Jammula Raviteja pursuing M.Tech in K.L.Univesity,

Green Fields Vaddaswaram, Guntur. Area interest in

research is Network Security.

Second Author:

V.Ramakrishna, M.Tech working as Associate Professor in

K.L.Univesity, Green Fields Vaddaswaram, Guntur. Area

of interest is software engineering and Network Security.

http://compm067.paisley.ac.uk/

