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ABSTRACT 
    Electrical power industry restructuring has created highly vibrant and competitive market that altered many aspects 

of the power industry. In this changed scenario, scarcity of energy resources, increasing power generation cost, environment 

concern, ever growing demand for electrical energy necessitate optimal economic dispatch. Practical economic dispatch 

(ED) problems have nonlinear, non-convex type objective function with intense equality and inequality constraints. The 

conventional optimization methods are not able to solve such problems as due to local optimum solution convergence. 

Metaheuristic optimization techniques especially Improved Particle Swarm Optimization (IPSO) has gained an incredible 

recognition as the solution algorithm for such type of ED problems in last decade. The application of IPSO in ED problem, 

which is considered as one of the most complex optimization problem has been summarized in present paper. This paper 

illustrates successful implementation of the Improved Particle Swarm Optimization (IPSO) to Economic Load Dispatch 

Problem (ELD). Power output of each generating unit and optimum fuel cost obtained using IPSO algorithm has been 

compared with conventional techniques. The results obtained shows that IPSO algorithm converges to optimal fuel cost with 

reduced computational time when compared to PSO and GA for the three, six and IEEE 30 bus system. 
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1. INTRODUCTION
ECONOMIC dispatch (ED) problem is one of the fundamental issues in power system operation. In essence, it is an 

optimization problem and its objective is to reduce the total generation cost of units, while satisfying constraints. Previous 

efforts on solving ED problems have employed various mathematical programming methods and optimization techniques. 

These conventional methods include the lambda-iteration method, the base point and participation factors method, and the 

gradient method. [1], [2], [18], [19].In these numerical methods for solution of ED problems, an essential assumption is that 

the incremental cost curves of the units are monotonically increasing piecewise-linear functions. Unfortunately, this 

assumption may render these methods infeasible because of its nonlinear characteristics in practical systems. These nonlinear 

characteristics of a generator include discontinuous prohibited zones, ramp rate limits, and cost functions which are not 

smooth or convex. Furthermore, for a large-scale mixed-generating system, the conventional method has oscillatory problem 

resulting in a longer solution time. A dynamic programming (DP) method for solving the ED problem with valve-point 

modeling had been presented by [1], [2]. However, the DP method may cause the dimensions of the ED problem to become 

extremely large, thus requiring enormous computational efforts. 

In order to make numerical methods more convenient for solving ED problems, artificial intelligent techniques, such as 

the Hopfield neural networks, have been successfully employed to solve ED problems for units with piecewise quadratic fuel 

cost functions and prohibited zones constraint [3], [4]. However, an unsuitable sigmoidal function adopted in the Hopfield 

model may suffer from excessive numerical iterations, resulting in huge calculations. 

In the past decade, a global optimization technique known as genetic algorithms (GA) or simulated annealing (SA), 

which is a form of probabilistic heuristic algorithm, has been successfully used to solve power optimization problems such 

as feeder reconfiguration and capacitor placement in a distribution system [1],[5]–[7]. The GA method is usually faster than 

the SA method because the GA has parallel search techniques, which emulate natural genetic operations. Due to its high 

potential for global optimization, GA has received great attention in solving ED problems. In some GA applications, many 

constraints including network losses, ramp rate limits, and valve-point zone were considered for the practicability of the 

proposed method. Among these, Walters and Sheble presented a GA model that employed units‘ output as the encoded 

parameter of chromosome to solve an ED problem for valve-point discontinuities [5].Chen and Chang presented a GA 

method that used the system incremented cost as encoded parameter for solving ED problems that can take into account 

network losses, ramp rate limits, and valve-point zone [8]. Fung et al. presented an integrated parallel GA incorporating 

simulated annealing (SA) and tabu search (TS) techniques that employed the generator‘s output as the encoded parameter 

[9]. For an efficient GA method, Yalcinoz have used the real-coded representation scheme, arithmetic crossover, mutation, 

and elitism in the GA to solve more efficiently the ED problem, and it can obtain a high-quality solution with less 

computation time [10]. 
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Though the GA methods have been employed successfully to solve complex optimization problems, recent research has 

identified some deficiencies in GA performance. This degradation in efficiency is apparent in applications with highly 

epistatic objective functions (i.e., where the parameters being optimized are highly correlated) [the crossover and mutation 

operations cannot ensure better fitness of offspring because chromosomes in the population have similar structures and their 

average fitness is high toward the end of the evolutionary process] [11],[16]. Moreover, the premature convergence of GA 

degrades its performance and reduces its search capability that leads to a higher probability toward obtaining a local 

optimum [11].Particle swarm optimization (PSO), first introduced by Kennedy and Eberhart, is one of the

modern heuristic algorithms. It was developed through simulation of a simplified social system, and has been found to be 

robust in solving continuous nonlinear optimization problems [13]–[17]. The PSO technique can generate high-quality 

solutions within shorter calculation time and stable convergence characteristic than other stochastic methods [14]–[17]. 

Although the PSO seems to be sensitive to the tuning of some weights or parameters, many researches are still in progress 

for proving its potential in solving complex power system problems [16]. Researchers including Yoshida et al. have 

presented a PSO for reactive power and voltage control (VC) considering voltage security assessment. The feasibility of their 

method is compared with the reactive tabu system (RTS) and enumeration method on practical power system, and has shown 

promising results [18].Naka et al. have presented the use of a hybrid PSO method for solving efficiently the practical 

distribution state estimation problem [19]. 

 

In this paper, a PSO method for solving the ED problem in power system is proposed. The proposed method considers 

the nonlinear characteristics of a generator such as ramp rate limits and prohibited operating zone for actual power system 

operation. The feasibility of the proposed method was demonstrated for three different systems [8], [20], respectively. 

 

2. PROBLEM DESCRIPTION 
The ED is one sub problem of the unit commitment (UC) problem. It is a nonlinear programming optimization one. 

Practically, while the scheduled combination units at each specific period of operation are listed, the ED planning must 

perform the optimal generation dispatch among the operating units to satisfy the system load demand, spinning reserve 

capacity, and practical operation constraints of generators that include the ramp rate limit and the prohibited operating zone 

[12]. 

 

2.1 Practical Operation Constraints of Generator 

 

For convenience in solving the ED problem, the unit generation output is usually assumed to be adjusted smoothly and 

instantaneously. Practically, the operating range of all online units is restricted by their ramp rate limits for forcing the units 

operation continually between two adjacent specific operation periods [1], [2]. In addition, the prohibited operating zones in 

the input-output curve of generator are due to steam valve operation or vibration in a shaft bearing. Because it is difficult to 

determine the prohibited zone by actual performance testing or operating records, the best economy is achieved by avoiding 

operation in areas that are in actual operation. Hence, the two constraints of generator operation must be taken into account 

to achieve true economic operation. 

 

2.1.1) Ramp Rate Limit: According to [3], [5], and [8], the inequality constraints due to ramp rate limits for unit generation 

changes are given 

a) As generation increases 

Pi-Pi
0
≤URi                (1) 

b) As generation decreases 

Pi-Pi
0
≤DRi                  (2) 

 

Where Pi  is the current output power and Pi
0
 is the previous output power. URi  is the up ramp limit of the i-th generator 

(MW/time-period); and DRi is the down ramp limit of the i-th generator (MW/time period). 

2.1.2) Prohibited Operating Zone: References [2], [3], and [8] have shown the input-output performance curve for a typical 

thermal unit with many valve points. These valve points generate many prohibited zones. In practical operation, adjusting the 

generation output Pi of a unit must avoid unit operation in the prohibited zones. The feasible operating zones of unit can be 

described as follows: 

Pi
min

≤Pi≤ Pi,1
l
                                  (3) 

Pi,j-1
u
≤Pi≤ Pi,j

l
,j=2….ni                        (4) 

Pi, ni
u
≤ Pi,≤ Pi

max
                    (5)  

 

2.2 OBJECTIVE FUNCTION 

The objective of ED is to simultaneously minimize the generation cost rate and to meet the load demand of a power 

system over some appropriate period while satisfying various constraints. To combine the above two constraints into a ED 

problem, the constrained optimization problem at specific operating interval can be modified as 

 

Minimize F t    =    = ai (Pi  
2
) +bi(Pi)+ci                     (6) 
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2.2.1Constraints 

i) Power balance 

i=Pd + Pl                         (7) 

ii) Generator operation constraints   

max (Pi
min

, Pi
0
- DRi) ≤ Pi ≤ min( Pi

max 
, Pi

0
-+URi)                (8) 

Pi = Pi
min

≤Pi≤ Pi,1
l                        

(9) 

P
u

i,j-1≤Pi≤ Pi,j
l
,j=2….ni                   (10) 

P
u

i, ni≤ Pi,≤ Pi
max                    

(11) 

iii) Line flow constraints 

PLf,k ≤  P
max

Lf,k, k=l….L                    (12) 

where the generation cost function Fi(Pi) is usually expressed  as a quadratic polynomial; ai, bi, and ci are the cost coefficients 

of the i-th generator is the number of generators committed to the operating system; Pi is the power output of the i-th 

generator; PLf,k is the real power flow of  line j ; k is the number of transmission lines; and the total transmission network 

losses is a function of unit power outputs that can be represented using B coefficients 

Pl = lmBmnPln                    (13) 

iv) Reactive power limit 

Q i
 min

≤ Qi ≤ Q i 
max                     

(14) 

v) Voltage limits 

Vi
 min

≤ Vi ≤ Vi 
max            

(15)
 

3. OVERVIEW OF PSO 
PSO is a population based stochastic optimization technique developed by Dr.Ebehart and Dr. Kennedy in 1995, 

inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation 

techniques such as GA. The system is initialized with a population of random solutions and searches for optima by updating 

generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential 

solutions, called particles, fly through the problem space by following the current optimum particles. The detailed 

information will be given in following sections. Compared to GA, the advantages of PSO are that PSO is easy to implement 

and there are few parameters to adjust. PSO has been successfully applied in many areas like Function optimization, artificial 

neural network training, fuzzy system control, and other areas where GA can be applied. 

 

The PSO belongs to the class of direct search methods used to find an optimal solution to an objective function (aka 

fitness function) in a search space. Direct search methods are usually derivative-free, meaning that they depend only on the 

evaluation of the objective function. The PSO algorithm is simple, in the sense that even the basic form of the algorithm 

yields results, it can be implemented by a programmer in short duration, and it can be used by anyone with an understanding 

of objective functions and the problem at hand without needing an extensive background in mathematical optimization 

theory. The PSO is a stochastic, population-based computer algorithm modeled on swarm intelligence. PSO is inspired by a 

kind of social optimization. A problem is given, and some way to evaluate a proposed solution to it exists in the form of a 

fitness function. A communication structure or social network is also defined, assigning neighbors for each individual to 

interact with. Then a population of individuals defined as random guesses at the problem solutions is initialized. These 

individuals are candidate solutions. They are also known as the particles, hence the name particle swarm. An iterative 

process to improve these candidate solutions is set in motion. The particles iteratively evaluate the fitness of the candidate 

solutions and remember the location where they had their best success. The individual's best solution is called the particle 

best or the local best. Each particle makes this information available to their neighbors. They are also able to see where their 

neighbors have had success. Movements through the search space are guided by these successes, with the population usually 

converging, by the end of a trial, on a problem solution better than that of non-swarm approach using the same methods. The 

PSO shares many similarities with evolutionary computation techniques such as GA. The system is initialized with a 

population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no 

evolution operators such as crossover and mutation.  

 

 PSO simulates the behaviors of bird flocking.  In PSO, each single solution is a "bird" in the search space. We call it 

"particle". All of particles have fitness values, which are evaluated by the fitness function to be optimized, and have 

velocities, which direct the flying of the particles. The particles fly through the problem space by following the current 

optimum particles. PSO is initialized with a group of random particles (solutions) and then searches for optima by updating 

generations. In every iteration, each particle is updated by following two "best" values. The first one is the best solution 

(fitness) it has achieved so far. (The fitness value is also stored.) This value is called pbest. Another "best" value that is 

tracked by the particle swarm optimizer is the best value, obtained so far by any particle in the population. This best value is 

a global best and called g-best. When a particle takes part of the population as its topological neighbors, the best value is a 

local best and is called p-best. After finding the two best values, the particle updates its velocity and positions with following 

equations
. 
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Vi
(u+1)

=W*Vi
(u)

+C1*rand()*(pbesti-Pi
(u)

)+ C2*rand()*(gbesti-Pi
(u)

)            (16) 

 

Pi
(u+1)

=Pi
(u)

+ Vi 
(u+1)

                 (17) 

 

In the above equation, 

 

The term rand ( )*(pbest i -Pi
(u)

) is called particle memory influence 

The term rand ( )*( gbesti -Pi
(u)

) is called swarm influence. 

Vi
(u)

 which is the velocity of ith particle at iteration ‗u‘ must lie in the range 

 Vmin ≤ Vi
(u)

 ≤ Vmax The parameter Vmax determines the resolution, or fitness, with which regions are to be searched                  

between the present position and the target position 

a. If Vmax is too high, particles may fly past good solutions. If Vmin is too small, particles may not explore sufficiently 

beyond local solutions. 

b. In many experiences with PSO, Vmax was often set at 10-20% of the dynamic range on each dimension. 

c. The constants C1and C2 pull each particle towards pbest and gbest positions. 

d. Low values allow particles to roam far from the target regions before being tugged back. On the other hand, high 

values result in abrupt movement towards, or past, target regions. 

e. The acceleration constants C1 and C2 are often set to be 2.0 according to past experiences 

f. Suitable selection of inertia weight ‘ω‘ provides a balance between global and local explorations, thus requiring less 

iteration on average to find a sufficiently optimal solution. 

 

In general, the inertia weight w is set according to the following equation, 

 

        (18) 

where w -is the inertia weighting factor 

            Wmax - maximum value of weighting factor 

            Wmin - minimum value of weighting factor 

            ITERmax - maximum number of iterations 

            ITER - current number of iteration          

The Equation (5.1) is used to calculate the particle's new velocity according to its previous velocity and the distances of 

its current position from its own best experience (position) and the group's best experience. Then the particle flies towards a 

new position according to Equation (2). The performance of each particle is measured according to a predefined fitness 

function , this is related to the problem to be solved. 

 

The step by step procedure of PSO algorithm is given as follows 

 

a. Initialize a population of particles with random values and velocities within the d-dimensional search space. 

Initialize the maximum allowable velocity magnitude of any particle Vmax. Evaluate the fitness of each particle and 

assign the particle's position to pbest position and fitness to pbest fitness. Identify the best among the pbest as gbest. 

b. Change the velocity and position of the particle according to Equations (5.1) and Equations (5.2) respectively. 

c.  For each particle, evaluate the fitness, if all decisions variables are within the search ranges. 

d.  Compare the particle's fitness evaluation with its previous pbest. If the current value is better than the previous 

pbest, then set the pbest value equal to the current value and the pbest location equal to the current location in the d 

dimensional search space. 

e.  Compare the best current fitness evaluation with the population gbest. If the current value is better than the 

population gbest, then reset the gbest to the current best position and the fitness value to current fitness value. 

f.  Repeat steps 2-5 until a stopping criterion, such as sufficiently good gbest fitness or a maximum number of 

iterations i function evaluations is met. 

 

4. PSO IMPLEMENTATION TO ELD 
When the losses are considered the optimization process becomes little bit complicated. Since the losses are dependent 

on the power generated of the each unit, in each generation the loss changes. The P-loss can be found out by using the 

equation 

 

                (19) 
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Where Bmn are the loss co-efficient. The loss co-efficient can be calculated from the load flow equations or it may be given 

in the problem. However in this work for simplicity the loss coefficient are given which are the approximate one. Some parts 

are neglected.  

 

The sequential steps to find the optimum solution are 

 

a. The power of each unit, velocity of particles, is randomly generated which must be in the maximum and minimum 

limit. These initial individuals must be feasible candidate solutions that satisfy the practical operation constraints. 

b. Each set of solution in the space should satisfy the following equation 

i=Pd + Pl                  (20) 

Pl calculated by using above equation .Then equality constraints are checked. If any 

c. Combination doesn‘t satisfy the constraints then they are set according to the power balance equation.  

                  (21)            

d. The cost function of each individual Pgi, is calculated in the population using the evaluation function F.    Here F is 

F=a*(Pgi) 
2
+b*Pgi +c               (22) 

where a, b, c are constants. The present value is set as the pbest value. 

e. Each pbest values are compared with the other pbest values in the population. The best evaluation value among the 

pbest is denoted as gbest. 

f. The member velocity v of each individual Pg is updated according to the velocity update equation 

Vid
(u+1)

 =w *Vi
(u)

 +C1*rand ( )*(pbest id -Pgid
(u)

 +C2*rand ( )*( gbestid -Pgid
(u)

)          (23) 

where u is the number of iteration. 

g. The velocity components constraint occurring in the limits from the following conditions are checked 

Vdmin = -0.5*Pmin                     (24) 

Vdmax = +0.5*Pmax                   (25) 

h. The position of each individual Pg is modified according to the position update equation 

P gid
(u+1)

 = P gid
(u)

 + V id
(u+1)

                  (26)                

i. The cost function of each new is calculated If the evaluation value of each individual is better than previous pbest; 

the current value is set to be pbest. If the best pbest is better than gbest, the value is set to be gbest. 

j. If the number of iterations reaches the maximum, then go to step 10.Otherwise, go to step 2. 

k. The individual that generates the latest gbest is the optimal generation power of each unit with the minimum total 

generation cost. 

5. IMPROVED SWARM INTELLIGENCE APPROACH TO ELD 
Especially, most of the PSO algorithms are aimed at unconstrained problems. For the constrained problems, the 

approach introduced is just the traditional combination of primitive PSO and the penalty function. It was investigated that the 

simple penalty function strategy cannot be integrated well with PSO algorithms because it does not utilize the historical 

memory information, which is an essential of PSO. Besides penalty functions face the difficulty of maintaining a balance 

between obtaining feasibility even as finding optimality. Thus, in order to solve constrained ELD problem optimization a 

new constraints handling strategy is used for improvement the optimization mechanism of PSO algorithm. The proposed 

approach is called preservation of Feasible Solutions Method (FSM). This method for constraint handling with PSO was 

adapted by Hu and Eberhart in [8]. In the proposed method, fitness function and constraints are handled separately. Fitness 

function is used to guide search direction. Constraints are used to check the feasibility of particles. When implementing this 

technique into the global version of PSO, the initialization process involves forcing all particles into the feasible space before 

any evaluation of the objective function has begun. Upon evaluation of the objective function, only particles which remain in 

the feasible space are counted for the new PBest and GBest values (or lBest for the local version).Although extra loops are 

needed to find feasible solutions, the time complexity is not high as expected. A feasible solution has to satisfy all the 

constraints. Once a constraint is not satisfied, it is not necessary to test other constraints. Thus, the overall time complexity is 

not proportional to the number of needed loops and the computation time will be much less. The idea here is to accelerate the 
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iterative process of tracking feasible solutions by forcing the search space to contain only solutions that do not violate any 

constraints.  

 

The process of the modified PSO algorithm for solution of the ELD problem can be summarized as follows: 

 

a. Read the original data including power system data and the PSO parameters. 

b. Set the generation counter t=0, Initialize randomly the particles of the population, Repeat initializing particle 

until it satisfies all the constraints. 

Note that it is very important to create a group of individuals satisfying the equality constraint (3) and inequality 

constraints (4). i.e.: summation of all elements of individual i. P and the created element of individual at random 

should be located within its boundary. Although, we can create element of individual at random satisfying the 

inequality constraint by mapping [0, 1] into [Pmax-Pmin], the particles are randomly generated between the 

maximum and the minimum operating limits of the generators. In the ED problems the number of online generating 

units is the ‗dimension‘ of this problem. For example, if there are N units, the i th particle is represented as follows: 

Pi = ( Pi1 , Pi2 , Pi3  , . . . , PiN ). 

c. The particle velocities are generated randomly in the range[-Vj
max 

,Vj
max

].The maximum velocity limit in the jth 

dimension is computed as follows: 

Vj
max=

, max , minj jX X

R


                   

(27)
 

Where, R is the chosen number of intervals in the jth dimension. For all the examples tested using the PSO 

approach, Vmax was set at 10–20% of the dynamic range of the variable on each dimension. 

d. Calculate the evaluation value of each particle, in the population using the evaluation function (1) as initial fitness 

and set initial position particles as the initial Pbest value of the particles. The initial best value among the particle 

swarm is set to initial Gbest. 

e. Let t=t+1. 

f.  update velocities and positions for all the dimensions in each particle by Eq. (16).and (17). 

g.  Calculate the fitness value of the new particles by power flow calculation and object function. 

h.  Update Pbest by using preserving feasibility strategy.If the new value is better than the previous Pbest and the 

particle is in the feasible space, then the new value is set to Pbest and then selected the particle with the best Pbest 

value among all the swarm as the Gbest.  

i.  The best value among all the Pbest values, Gbest, is identified. 

j.  Go to step (5) until a termination criterion is met, usually a sufficiently good fitness value or a maximum number 

of generation is chosen for termination criterion. 

 

5. SIMULATION RESULTS 
The applicability and validity of the PSO algorithm for practical applications has been tested on various test cases. 

The obtained best solution in fifty runs are compared with the results obtained using GA [2]. All the programs are developed 

using MATLAB 7.01 and the system configuration is Intel Core 2 Duo with 4 GHz speed and 4GB RAM. 

 

In this section, to demonstrate the effectiveness of the proposed method, the IPSO are applied to solve the three, six, and 

thirty bus systems by considering the constraints of the ED problem. The simulation results are compared with PSO and GA 

method reported in literature. The parameters of the IPSO such as c1 and c2 are set as 2.05, K =0.729 , Vmin =0.4, Vmax =0.9,  

 

Table I, II, III shows the data of the test system. The best results obtained from the IPSO are compared with the PSO and 

GA. The results show that the proposed approaches have high solution quality than others method as depicted. Table IV, V, 

VI shows the effectiveness in term of the solution quality among 100 trials of proposed methods. The solutions of the 

proposed methods higher quality than the rest methods in term of minimum cost, average cost, maximum cost, 

computational time and solution deviation. 

The cost coefficients and generation limits of three units system are taken from [2]. Transmission loss for this system is 

calculated using matrix. 

TABLE I 

 

GENERATING UNIT CAPACITY AND COEFFICIENTS: THREE GENERATING UNIT SYSTEM 

 

a
 i

 

($/MWh

2

)  

b
i 

 

($/MWh)  

c
i 

 P
min

 

 

(MW)  

P
max

 

 

(MW)  

0.008  7  200  10  85  

0.009  6.3  180  10  80  
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0.007  6.8  140  10  70  

 

ai,bi,ci are the fuel cost coefficients and Pmax and Pmin are the real power limits. 

 

TABLE II  

 

SIX GENERATING UNIT SYSTEM 

 

a
i 

($/MWh

2

) 

b
i 

($/MWh) 

c
i

 P
min

 

(MW) 

P
max

 

(MW) 

0.0070 7 240 100 500 

0.0095 10 200 50 200 

0.0090 8.5 220 80 300 

0.0090 11 200 50 150 

0.0080 10.5 220 50 200 

0.0075 12 120 50 120 

 

 

TABLE III 

 

IEEE 30 BUS SYSTEM 

 

 

 

UNIT

S  

p
i

MAX

 

(MW)  

p
i

MIN

  

(MW) 

a
i
 

($/MWh
2

)  

b
i
 

 

($/MWh)  

C
i
 

1  50  200  0.00375  2.00  0  

2  20  80  0.01750  1.75  0  

5  15  50  0.06250  1.00  0  

8  10  35  0.00834  3.25  0  

11  10  30  0.02500  3.00  0  

13  12  40  0.02500  3.00  0  

 

 

The results including the generation cost, and power losses are shown below. The result gives the optimum generations 

for minimum total cost and seems to be efficient for solving non convex ELD problems. The IPSO algorithms were tested 

and the results were presented for various test systems. Results showed that IPSO methods are well suited for obtaining the 

best solution for fuel cost functions of differentiable, non smooth, and non differentiable of the test systems. 
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TABLE IV 

SIMULATION RESULT FOR THREE BUS SYSTEM 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE V 

SIMULATION RESULT FOR SIX BUS SYSTEM 

 

 IPSO PSO  GA 

P1(MW)  323.6373  276.2339  277.322 

P2(MW)  76.685  106.1268  105.2414 

P3(MW)  158.435  143.868  144.5728 

P4(MW)  50.00  54.5248  55.6876 

P5(MW)  51.976  80.5364  82.7985 

P6(MW)  50.00  50.00  51.000 

Pl(MW)  10.73541  11.29094  11.6883 

F($/hr)  8352.61  8388.13  8390.93 

 

 

TABLE VI 

SIMULATION RESULT FOR IEEE 30 BUS SYSTEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 
In this paper, we have successfully employed the IPSO method to solve the ELD problem with the generator constraints. 

The IPSO algorithm has been demonstrated to have superior features, including high-quality solution, stable convergence 

characteristic, and good computation efficiency. Many nonlinear characteristics of the generator such as ramp rate limits, 

valve-point zones, and non smooth cost functions are considered for practical generator operation in the proposed method. 

The results show that the proposed method was indeed capable of obtaining higher quality solution efficiently in ED 

problems. 
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