
Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1075 | P a g e

Multi-Path QoS-Aware Service Composition

Osama Kayed Qtaish*, Zulikha Bt Jamaludin**, Massudi Mahmuddin***
*(School of Computing, Universiti Utara Malaysia

** (School of Computing, Universiti Utara Malaysia

*** (School of Computing, Universiti Utara Malaysia

Abstract
The goal of QoS-aware service composition is to generate

optimal composite services that satisfy QoS

requirements defined by clients. However, when

compositions contain multiple execution paths, it is

difficult to generate a solution that simultaneously

optimizes all the execution paths involved in the

composition at the same time, while meets global QoS

constraints imposed by clients. Furthermore, finding an

exact optimal solution by evaluating all possible

combination, results in a combinatorial problem which is

known to be NP-hard. This paper aims to tackle these

major issues by proposing an innovative approach that

suits for multi-paths compositions. In this approach, an

optimization mechanism is proposed that computes the

optimization by considering only the path that will be

followed during the execution. To do so, a data mining

method is adapted to predict, at runtime and just before

the actual execution, the path that will be followed

during the execution. By optimizing only the predicted

path, it is expected to generate an optimal solution that

delivering the best possible QoS performances, while

guarantee meeting global QoS constraints. For solving

the optimization problem, the problem is modelled as

multi-dimensional multi-choice knapsack problem

(MMKP). Then, heuristic algorithms are applied to solve

it. By applying heuristic, it is expected to significantly

reduce the computation efforts.

Keywords – data mining, heuristic algorithm, QoS, service

selection, web service

1. INTRODUCTION
Recently, Service Oriented Computing (SOC) has gained a

considerable momentum from both industry and academia

as a new emerge paradigm to develop rapid, low cost, and

loosely coupled software systems. This vision is captured by

Service Oriented Architecture (SOA) design principles such

as loosely coupling. SOA is “a way of designing a system so

that it can provide services to end users and/or other

applications in the network” [1]. Web services are the

leading technology for implementing SOA.

 Web services are software systems designed to perform

functionality. They are loosely coupled, network available,

platform-independent, self-described interface, and can

communicate using standard protocols. They are published

by service providers (i.e., organizations that provide service

descriptions and ensure service implementations), located,

and invoked by clients (organizations). Clients in turn, can

utilize web services without the need to install it [2].

One of the main benefits gained from implementing web

services and SOA is the ability to compose new

functionality out of existing outsourced web services into

so-called composite services. The process of creating such

composite services is called web service composition [3].

 SOA along with service composition technology have

changed the way software engineers design and develop

business processes. Rather than developing entirely new

processes; SOA processes are developed by composing

network available web services [4]. Business process is a

set of related tasks or activities that designed to realize a

specific organizational goal. Each task (also referred as an

abstract web service) of such a business process can be

accomplished by a single outsourced web service hosted by

external partners. This vision enables agile collaborations

between several business partners, and thus decreases the

cost of building business processes.

 Under this scenario, a software engineer, during the

design time, defines the business process by identifying and

arranging the abstract services/tasks (a semantic description

of a specific functionality, e.g. invoking a credit card).

Based on the semantic descriptions of the abstract services,

many functionality equivalents web services (services that

perform similar functionality also called candidates) can be

discovered for each abstract web service. Then, the service

selection can be performed dynamically at runtime by

selecting the best outsourced services that can accomplish

the abstract services‟ functionality [5]. One of the most

substantial selection factors that can be served as selection

criteria between those equivalent services is the Quality of

Service (QoS) criteria. QoS represents web service‟s non-

functional characteristics such as cost, response time,

availability, reliability.

 Having QoS characteristics as selection criteria; the goal

of QoS-aware service composition process is to select one

candidate web service for replacing each abstract web

service such that the entire QoS of the business process

(hereafter used interchangeably with terms “composite

service” and “composition”) is optimized while clients (i.e.,

organizations) QoS requirements are satisfied. These

requirements include QoS global constraints and

preferences. QoS global constraints are constraints imposed

by the clients on the whole composition. For example, a

client could specify that the total cost of the composite

service execution must be less than 2000 Dollars, at the

same time; they could prefer the composite service with

high security and/or low response time.

 On the other hand, compositions are operated in highly

dynamic environments. In such environments, different

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1076 | P a g e

possible scenarios may occur at runtime, making the real

time compositions facing unanticipated changes. In the case

that the composition is defined at design time, it is desirable

to support the expectations that can be anticipated by

composition engineers. Flexibility by configuration or

flexibility by design referred to the structural properties of a

composition which allow it to flexibly respond to different

scenarios anticipated by composition engineer at design time

[6]. Flexibility by configuration by conditional structures

(include OR split/join, XOR split/join and the OR split with

m-out-of-k join patterns) provides the ability to incorporate

multiple execution paths within the composition definitions

at design time [7]. The result is distinct set of multiple

execution paths. Each path represents a scenario that can be

followed during the execution of a composition instance [6].

 Within the context of multiple execution paths,

optimization algorithms are required to compute the

optimization by considering all the execution paths involved

in a composition. However, it is difficult to generate a

solution that simultaneously optimizes all execution paths

involved in the composition at the same time, and satisfy

global QoS constraints imposed by clients.

 For service optimization, finding an exact optimal

solution required a strategy based on evaluating all the

possible combinations to find the optimal one. Such a

straightforward strategy results in a combinatorial problem,

and the computational complexity to find a solution for this

problem is non-deterministic polynomial time (i.e., NP-

hard) [8]. It is impractical and time consuming to evaluate

all these combinations to find the optimal one. Therefore,

solutions based on heuristic methods, although they deliver

near-to-optimal solutions, are desired [9].

 The aim of this work is to tackle these major issues

occurs when optimizing compositions including multiple

execution paths. For this purpose, an innovative QoS-aware

service composition approach is proposed that efficiently

suits for multi-path compositions. In this approach, an

optimization mechanism is proposed based on the

combination between a data mining method and heuristic

algorithms. This mechanism allows computing the

optimization by considering only the path that will

potentially be followed during the execution of a business

process. By using our approach: (i) it is expected to always

generate solutions with the best QoS possible, at the same

time, meet global QoS constraints, (ii) it is expected to

significantly reduce the computation efforts for finding

optimal solutions.

2. RELATED WORKS
Different techniques are proposed to handle the optimization

of multi-path compositions. For example, Yu et al. [10],

Canfora et al. [11], Wang et al. [12], and Lecue [13]

compute the optimization assuming that a certain path will

be more likely executed than another according to

probability of paths execution. The assumptions are based

on stochastic information indicating the probability of paths

being executed at runtime. Paths‟ probability of executions

can be estimated either by inspecting the system logs which

contain information about the past executions or can be

specified by the composition engineers. However, the results

of such assumptions may be false; consequently, the

generated solutions may not have the best QoS performance.

 Zeng et al. [14], [15] optimize each path separately by

decomposing the composition into execution paths, and after

the optimization process, the execution paths are aggregated

into an overall composition that consists of all paths. If there

is a common abstract service that belongs to more than one

path, the system identifies the hot path for the considered

web service. They define the hot path as the path that has

been most frequently used to execute the considered service.

However, in the case that the actual execution of the

composition is not following the hot path, the executed path

may not have the best QoS performance. Even worst, the

executed path may not meet global QoS constraints.

 Uker et al. [6] survey the QoS-aware service composition

approaches in order to analyse the ability of the optimization

algorithms to simultaneously generate optimal plans for all

executions paths involved in compositions. They conclude

that, within the context of multi-path compositions, it is

difficult to generate a solution that simultaneously optimizes

all the execution paths in the composition at the same time.

In a subsequent paper [16], the authors address this problem

by presenting an approach that enables users to bias the

optimizations using a set of meta-metrics. These meta-

metrics include: execution probability of an activity,

previous execution history of each activity, and probability

of occurrence. The approach aims to find an approximation

solution for each path involved in the composition. A trade-

off between the paths is made, which chooses a path to favor

by using a set of meta-metrics. For each path, the meta-

metrics are computed as the weighted average of the

aggregate values of meta-metrics. Then, the selection

problem is solved using integer programming (IP) solution.

Similar to this approach, Neelavathi et al. [17] also propose

to use meta-metrics to resolve the conflicts caused by

optimizing multiple execution paths. Their meta-metrics

represent a priority of execution activities in execution

paths. However, in these approaches, service selection

optimization is biased using a set of meta-metrics. These

meta-metrics are based on assumptions either assigned by

the composition developers or estimated from the log trace

records. These assumptions may be false. Consequently, the

solutions obtained from these approaches may prove to be

suboptimal for some execution paths. Even worst, it may

violate the global QoS constraints.

 In contrast to the above mentioned approaches, the

solutions generated from our approach are expected to

deliver the best possible QoS, at the same time, satisfy

global constraints. This is because of the proposed

optimization mechanism that designed to optimize only the

path that will be followed during the execution of a

composition.

3. THE PROBLEM MODEL
The problem model is formulated as follows:

- A set of tasks or abstract web

services },...,
2

,
1

{
a

asasasAS  , where ai ,...,1 , and a

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1077 | P a g e

represents the total number of abstract services involved

in a composition.

- A set of service classes },...,2,1{ aSSSS  . For each

class Si, there is a set of functionality equivalent candidate

service (also called concrete service) },...,2,1{
ibsssiS  ,

that can execute the abstract service asi, where ibj ,...,1

, and the variable bi represents the number of candidate

founds for abstract service asi.

- More than one QoS characteristics values can be assigned

for each candidate. Therefore, a QoS vector qij is assigned

for each candidate sj. The vector contains the different

QoS values represented by the index k,],...,
1

[
n

ij
q

ij
q

ij
q  ,

where nk ,...,1 .

- A vector of global QoS constraints imposed by

clients],...,
1

[
n

GSGSGS  , where nk ,...,1 . It can contain

none, one or n global QoS constraints.

- A valid solution, i.e., a composition plan, can be obtained

by assigning candidate services sj to each abstract service

asi such that
ij Ss  for which the aggregated QoS values

meets the given global QoS constraints, and the overall

QoS value of the composite service is maximized.

Table 1 represents the notations used for the problem model.

 Table 1: Problem model notations

Notation Meaning

Abstract service asi Describing the desired

functionality.

Service class Si Is a collection of candidate

services with a common

functionality but different

QoS characteristics value.

Candidate service sj Candidate service j from

service class Si for abstract

service asi.

QoS vector],...,
1

[
n

ij
q

ij
q

ij
q  QoS vector represents the

different QoS values of

candidate service sij

QoS global constraints

],...,
1

[
n

GSGSGS 

Is a vector of all QoS global

constrains imposed by the

client on the whole

composition.

3.1 Modelling the structures

To define a composition, different structures (such as

sequential, loop, etc.) can be used to connect the services. In

this work, we focus on compositions that defined using

sequential and conditional structures. Other structures, such

as loop for example, may be reduced to sequential as in [15].

 Definition 1: Execution path (EP): If a composition

contains conditional structures, it has multiple sequential

execution paths. Each execution path EPi represents a

sequence of services },...,...,
1

{
a

S
i

SS . Each EPi takes only

one branch in each conditional branching. For example,

there are 3 execution paths in fig 1:

S4

S9

S8S7

S2

S3 S6

S5

S1

Execution path 3

Execution path 2

Execution path 1
EP1={S1,S2,S3,S4,S6,S9}

EP2={S1,S2,S3,S5,S6,S9

}

EP3={S1,S2,S7,S8,S9}

Figure 1: Multiple execution paths composition

}
9

,
6

,
4

,
3

,
2

,
1

{
1

SSSSSSEP 

}
9

,
6

,
5

,
3

,
2

,
1

{
2

SSSSSSEP 

}
9

,
8

,
7

,
2

,
1

{
3

SSSSSEP 

and ASEPEPEP 
3

,
2

,
1

Definition 2: Predicted path (EPpred): is the execution path

that will be followed during the execution of a composition.

It can be one of the sequential execution paths defined

above. EPpred is identified using the data mining method

explained later.

4. MULTI-PATH QOS-AWARE SERVICE

COMPOSITION

As illustrated in Fig. 2, QoS-aware composition process has

four inputs: abstract composition (i.e., a set of abstract

services connected using composition structures), a list of

outsourced candidate web services discovered for each

abstract service and their QoS characteristic values, and

finally a client‟s (organization‟s) global QoS requirements.

The desired output is an optimal composition plan.

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1078 | P a g e

Abstract

Composition

Discovery

QoS-Aware Service Composition

Optimal

composition

plan

De
sig

n Se
lec

t

Dis
co

ve
r

Output

Abstract Service

Concrete Service

QoS

characteristics

QoS

Requirements

Abstract composition

(Compostiob structures)

Dicovered (candidate)

web services

Path

Prediction

Co
mp

os
itio

n

log

Multiboost
Naïve Base

(MB NB)

 Optimization
QoS

Computation

CP and CPP

Heuristic

Algorithms

Requster

Inputs

QoS

aggregation

functions

Utility and

objective

functions

Figure 2: the proposed approach

 In this work, the QoS-aware compositions process is

carried out dynamically on instance by instance basis. It is

started by predicting, at runtime and just before the actual

execution of compositions, the path that potentially will be

followed during the execution of a composition. To do so,

the Multiboost Naïve Base (MB NB) machine learning

algorithm will be applied on the composition log to learn

how to classify the unknown classes. Note that this step will

be carried out offline, so it does not affect the performance

of the proposed approach. After training the algorithm, it

will be ready to predict the path based on the data provided

by the composite service‟s requester. At runtime, a client

(i.e., a service requester) is required to provide data

including personal data and data describing the condition of

the service being requested. Then, the data needed for

prediction are collected and formatted, and then input to a

classifier to classify into target classes, i.e., composition

paths. Based on the predicted path, CP and CPP heuristic

algorithms will compute the optimization by considering

only the predicted path.

4.1 Selection criteria

In our approach, we considered the following QoS

characteristics as selection criteria: cost, response time,

reliability, availability, security (encryption level),

throughput, reputation and composability. The suggested

QoS characteristics are identified based on our previous

work [18], where we investigating and analyzing 25 QoS

characteristics that were used in the area of web service and

SOA.

 Cost represents the amount of money that a service

requester has to pay for a service provider for using its

service. Response time is a typical measure of performance.

It represents the total time required to complete a service

request, which can be defined by the sum of the time a

service need to process a request on the provider side

(processing time), and the time needed to send a request and

receive a response over a network [19]. For reliability, it

represents degree that a service is able to correctly respond

to a request in a specified time interval. The number of a

service‟s failures in minutes, days or months describes its

reliability [20]. The availability of a web service represents

the probability that the service is ready for access when

required to immediate use [15], [20]. Security characteristic

can include numerous aspects. It means providing

confidentiality, authentication, authorization, encrypting

data and non-repudiation. These security aspects can be

provided in different level of policy by service providers

[19], [20]. The only aspect that can be described with

numerical value is the encryption level, which is a

measurement that describes the length for a key that is used

for encryption [21]. For throughput, it is a measure of

service‟s productivity. It can be defined as the number of

requests that the service provider can process in a given time

period [19], [20]. Reputation represents a ranking that is

provided by the users of a service based on their experience

of using it. Reputation measures the trustworthiness of a

service [15]. Finally, composability represents the

probability that the service is executed as a member of the

composition service [22].

4.2 QoS computation for web service composition

The QoS value of a composite service is computed from its

constituent web services. The QoS value of a composite

service SN is defined by the vector Q. This tuple contains

the aggregated QoS values of a composite service (i.e., a

solution) represented by the index k,

)(SN)
n

,…(SN),
1

(Q = Q Q , where)(SN
k

Q is the estimated kth

QoS characteristic of the composite service SN. The

aggregation functions are presented in the table 2. Some

aggregation functions are similar to those proposed by Zeng

et al. [15] and Jaeger et al. [21]. In this table, the variable a

represents the number of services involved for the

computation. The variable xij represents a selection variable.

Note that the web services that only belong to the predicted

path are considered for computation i.e. predEPi .

Design

time Runtime

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1079 | P a g e

 Table 2: QoS aggregation functions

QoS

characteristic

Aggregation function

Cost





predEPi

ijij

k

k xqSNQ *)(

Response time
ij

EPi

ij

k

k xqSNQ
pred

*)(




Reliability






predEPi

ijij

k

k xqSNQ *)(

Availability






predEPi

ijij

k

k xqSNQ *)(

Encryption level

predijij

k

k EPixqSNQ ),*min()(

Throughput predijij

k

k EPixqSNQ ),*min()(

Reputation a

xq

SNQ

ij

predEPi

ij

k

k

*

)(






Composability a

xq

SNQ

ij

predEPi

ij

k

k

*

)(






 As presented in table 2, availability and reliability are

multiplicative QoS characteristics (aggregated as a product)

and result in nonlinear functions. However, linear functions

(aggregated as a summation) are easier to be processed.

Therefore, similar to Zeng et al. [15], nonlinear functions

are transformed into linear by applying a logarithm

operation. For example, the aggregation function for

reliability can be transformed to summation function as:

 
 



predEPi predEPi

ij

k

ij

k

k qqSNQ)log()log())(log(

4.2.1 Utility function

If more than one QoS characteristics are subject to

optimization, then an aggregated goal function is required to

consider all the QoS characteristics. For this purpose, each

candidate service ij Ss  is associated with utility function

uij. This function depends on the QoS characteristics‟ types

i.e., positive or negative. For positive QoS characteristics,

meaning that a higher value denotes a better QoS, like

availability and reliability, the function needs to maximize

the values, whereas, the values of the negative

characteristics, like cost and response time, needs to

minimize. In addition, QoS characteristics have different

units of measurements. For example, reliability is a

probability ratio and varies between 0 and 1 while response

time is expressed in milliseconds by a positive number. To

perform fair computation, and to allow uniform

measurement of different QoS characteristics independent

from their units and ranges, all the QoS characteristics are

normalize by their average and slandered deviation.

Furthermore, all the QoS characteristics are weighted by

their importance.

 Definition 3: (Utility Function): Suppose that all eight

QoS characteristics mentioned earlier are involved for

optimization. The utility function is defined as follows [10]:























 



k

k

k

i

k

i

k

ij

k

k

k

i

k

ij

k

i

ij W
q

W
q

u *)(*)(
8

3

2

1 






 (1)

Where Wk is the weight assign for each QoS characteristics

which defined by clients such that]1,0[kW and



n

k

kW
1

1.

The index

8...1k

represents the different QoS

characteristics. The first part of the equation i.e., the

summation where 2,1k represents the normalization of the

negative QoS characteristics, while the second represents

the summation for the positive. i and i are the average

and standard deviation for the values of QoS characteristics

of all candidates in service class Si.

 The selection variables xij is used to determine whether a

candidate service is selected for optimal composition or not.

The value of xij is either 0 or 1. 1 if the candidate service sij

is selected for the abstract service asi, while 0 if not. There is

exactly one candidate service selected for each abstract

service asi i.e., 1...,1, 21


iibii xxxaii .

Based on the above, the selection problem can be modelled

as follows:

)*max(
1

1 1


 i

ib

j

ijij xu

Subject to the global QoS constraints

k

k GSSNQ )(, for negative QoS characteristics (price and

response time)

k

k GSSNQ )(, for positive QoS characteristics (rest of QoS

characteristics)

While keeping:





ib

j

ijx
1

1 , },,...,1{ ai and







selectednotissif

selectedissif
x

ij

ij

ij
,0

,1

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1080 | P a g e

4.3 Mapping to multi-dimensional multi-choice

knapsack problem (MMKP)

Definition 4: (MMKP): Suppose there are N object groups,

each has)1(NiI i  objects. Each object has a profit pij

and requires resource),...,1(ijijij rmrr  . The amount of

resources available in the knapsack is),...,1(RmRR  .

MMKP is to select exactly one object from each object

group to be placed in the knapsack so that the total profit is

maximized while the total resources used are less than the

resources available.

 On the other hand, QoS selection aims to select exactly

one candidate from each service class such that the entire

QoS value of the composition is optimized while QoS

requirements defined by clients are satisfied.

 Building on the similarity between these two problems,

the selection problem can be mapped to MMKP as follows:

 The knapsack is represented by the composition.

 Each service class represents an object group.

 Each candidate in a service class represents one object

in a group.

 Each utility function uij represents a profit pij and can be

calculated using equation (1).

 The QoS characteristics qij of a candidate sj represent

the required recourse rij of an object.

 The QoS global constraints GS are considered as the

resources available in the knapsack R.

 The algorithm is to select exactly one candidate from

each service class such that the entire QoS value of the

composition is optimized while QoS requirements

defined by clients are satisfied. However, the MMKP

requires that the total resources are less than the

recourse available. But in the selection problem, the

total QoS characteristics are required to be either less

(for negative characteristics) or greater (for positive)

than the global QoS constraints. Therefore, positive

characteristics are needed to be transformed into

negative. To do so, the values of positive characteristics

are multiplied by -1.

 The service selection problem can be formulated

mathematically as follows, where O represents the objective

function:

maximize)*(
1

1 1


 


i

ib

j

ijij xuO

Subject to the QoS global constraints

k

k GSSNQ )(nkbjai i ,...1,,...,1,,...,1, 

While keeping





ib

j

ijx
1

1 , },,...,1{ ai and








selectednotissif

Sclassforselectedissif
x

ij

iij

ij
,0

,1

 MMKP is known as NP-hard [23]. Due to its high

computational complexity, approaches that deliver exact

optimal solutions are inappropriate for real time decision-

making applications. Especially in our scenario where a

quick response for a workflow instance is very important.

Thus, heuristic represents a novel approach. Therefore, new

adapted heuristic algorithms are proposed to reduce the

computation efforts.

4.4 Heuristic algorithms for the selection problem

Building on the analogy between the MMKP and the

selection problem, our approach is to adapt heuristics that

are known to be efficient for solving MMKP, and apply it to

solve the selection problem.

 For solving the MMKP, a constructive and

complementary search approach is developed by Hifi et al.

[24]. In this approach, the constructive procedure CP is

applied to generate a feasible solution, while the

complementary procedure CCP is used to improve the

quality of the solution generated from CP. According to the

authors, the experiments result shows that the algorithms

generate high-quality solutions within small computing

times. The algorithms are adapted here to solve the selection

problem. These algorithms are chosen because of their

ability to generate quality solutions, reduce the computation

efforts resulted from the problem, and finally can be easily

applied to solve the selection problem.

4.5 Solving the selection problem using CP and CCP

First, we introduce the representation of a solution along

with some notions:

 A solution (SN) for the selection problem can be

represented as illustrated in Fig 3.

Figure 3: binary representation for a solution

 For each service class Si, one and only one candidate

service sj is selected, i.e., 1ijx if the j
th

candidate service s

of the i
th

service class Si has been selected, otherwise 0ijx .

A feasible solution is such that:

pred

a

i

bi

j

k

ij

k

ij EPiGCxqnk  
 

,*},,..,1{
1 1

 Note that the feasibility of the predicted execution path is

only checked, i.e.,
predEPiiff : . The predicted execution

0 0 1 1 0 .. 0 0 1 0

Service class →

Service candidate →

Bit subvector →

  aSN2SN1SN

4 3 2 1 2 1 3 2 1

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1081 | P a g e

path
predEP is determined using the data mining method

introduced later.

 For the solution SN, there are two distinguished states:

feasible state (FS); if the solution SN does not violate the

amount of available global QoS constraints, and unfeasible

state (US); if the solution SN violates at least one or more

global QoS constraints.

4.5.1 Initial feasible solution

The initial feasible solution is obtained using the CP. The

CP is a greedy approach with DROP and ADD phases to

generate a feasible solution. The steps involved in the

algorithm are introduced as follows:

 Calculate the pseudo-utility ratio (ut) for each candidate

service s using this equation:

},...,1{,*/
1

nkqGSuut
k

ij

n

k

k

ijij   

Where uij is the utility function defined in (1), and
k

ij

k

qGS, are the global QoS constraints and the QoS

characteristics values respectively.

 Select the candidate s from each service class Si,

},..,1{ ai which has the maximum pseudo-utility ration

utij.

 Check the state of the obtained solution SN: if feasible

state (FS), then CP terminates; else (DROP phase), it

determines the most violate constraint
k

GS . With respect

to
k

GS , it selects the service class
i

S corresponding to

the fixed candidate service
i

s having the largest QoS

value




iji

k

q all over the fixed candidate services and

regarding the most violated constraint.

 (ADD phase) Swap the selected candidate service with

another candidate s from the same service class
i

S .

 Check the feasibility of new obtained SN, if US; select

the lightest candidate
i

s of the current service

class
i

S which in turn is considered as the new selected

candidate service.

 Iterate until an FS or the smallest unfeasibility amount

is obtained.

4.5.2 Improving the initial feasible solution

To improve the QoS values of the initial feasible solution

SN obtained by CP, CCP is applied. It tries to iteratively

improve the solution SN by applying:

A. A local swap strategy for selected candidate

services that belongs to SN, called old candidates.

B. A replacement stage that replaced the old candidate

to another new one, called new candidate, selected

from the same service class. Each replacement

between an old and new candidate is authorize if

and only if the obtained solution SN realizes a FS,

i.e., maintains the feasibility of SN.

 The procedure steps are introduced as follows:

 Apply CP to obtain initial feasible solution.

 Initially, set the best solution equal to the solution

obtained by CP.

 Start the conditional loop by performing a local

swap search strategy procedure in order to improve

the initial solution.

 If the obtained solution (obtained after performing

the local swap strategy) realizes a better solution

value compared to the initial one; then set the best

current solution equal to the obtained one.

 Repeat the loop until the condition is true.

 The steps of the Local swap search procedure are

introduced as follows:

Step 1: Initialize the best candidate service to swap:

 1.1
iiSNuvalue , where

iiSNu is the utility of the old

selected candidate si in the i
th

service class Si to be swapped.

 1.2
ii SNk  , where

ik is a selected candidate service in Si

service class to be swapped.

Step 2: Perform the exchange if authorized:

 2.1 perform the exchange if the there is a new candidate

service s that has larger QoS value than the old candidate

and, at the same time, realizes a FS.

 2.2 return the best candidate service ki to be swapped.

4.6 Execution path prediction

Organizations adopt Workflow Management Systems

(WFMS) to define, manage and execute their business

processes

 WFMS store the data generated from the execution of

workflows in logs. The data stored in databases (logs) are

rich with concealed information that can be used for making

intelligent business decisions [25]. On possible way to

reveal this valuable information is by applying data mining

algorithms on these logs.

 Apart from the QoS-aware service composition, Cardoso

[26] emphasizes the importance of QoS management for

workflows and organizations. He focusses on predicting the

QoS of workflows before they executed or during the

execution. To this aim, the author proposes a novel method,

based on data mining techniques, that allows predicting with

high level of accuracy the QoS of workflows. Their method

is adapted here for the purpose of predicting, at runtime, the

sequence of web services that will be executed during a

composition‟s execution.

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1082 | P a g e

4.6.1 Composite service scenario

This section describes the scenario that will be used

throughout this paper to explain the method of predicting the

execution path. The scenario is the same used by Cardoso

[26].

 A major bank has decided to adopt a WFMS in order to

support its business processes. The business processes

(composite services) supported by the bank are developed

using web service composition technology. Each function of

the composite services can be accomplished by a single

outsourced web service.

 One of the composite services supplied by this bank is

the loan composite service illustrated in Fig 4. It is

composed of 13 web services which are connected using

sequential (services are executed in sequence order) and

conditional structures (among all the branches, only one

branch is executed).

 In this composite service, a client (i.e., a bank loan‟s

requester) is required to fill electronic from for requesting a

loan. The data provided by the client are forwarded to Check

Loan Type web service to determine the loan types. Based

on its type, the request is then forward to one of the three

services: Check Home Loan, Check Educational Home

Loan, or Check Car Loan. The request can be: accepted or

rejected or approved conditionally in the case of a home

loan. Approve (Reject) Home Loan, Approve (Reject)

Educational Loan, and Approve (Reject) Car Loan are the

web services in charge of accepting (rejecting) a loan

request. The result of the loan request is then e-mailed to the

client. Finally, the loan application data is stored in a

database by the Archive Application web service.

Approve

Home Loan

Archive

Application

Reject Car

Loan

Check Car

Loan

Check

Loan Type

Check Home

Loan

Notify Home

Loan Client

Approve

Home Loan

Conditionall

y

Approve Car

Loan

Check

Education

Loan

Reject Home

Loan

Notify Car

Loan Client

Notify

Education

Loan Client

Client

request

Figure 4: Bank loan composite service [26]

4.6.2 Composition logs

In PAIS (Process Aware Information System) such as

WFMS, the data generated from the execution of business

processes are recorded into so-called execution logs. During

the execution of a composite service, WFMS stores data

including real time information describing the execution and

the behaviour of the composite service, web services, and

instances. Table 3 illustrates an example of a composition

log. The data stored in these logs are rich with concealed

information. One useful and important piece of knowledge

that can be extracted from these logs is the subset of the web

services that will potentially be executed by composition

instance.

4.6.3 Path prediction method

The adapted data mining method is composed of three steps,

the first two are similar to Cardoso, while the third is added

to the purpose of runtime predication, and carried out at

runtime.

4.6.3.1 Extending the composition log

Additional data are required to be recorded in logs to carry

out execution path prediction. These data are runtime

generated information indicating the input (output) values

parameters passed (received) to (from) web services and

their types. These values are generated at runtime during the

execution of composition instances. Each „parameter/value‟

entry as a data type, a name, and a value, (for example, int

loannumber=12323). To store such information, the current

composition logs need to be extended. Furthermore, an extra

field needs to be added to the log in order to store execution

path information; which describing the path that has been

taken during the execution of a composite service (i.e., the

web services that have been executed). Table 4 illustrates an

example of extended composition log.

Table 3: Composition log

Date Composition Instance Web service Service instance

11:57 23-02-2011 Loan Application LA112 RejectHomeLoan RHL01 …

11:58 23-02-2011 Loan Application LA112 NotifyUser NU22 …

12:05 23-02-2011 Insurance Claim IC186 CheckClaim FCR54 …

… … … … … …

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1083 | P a g e

Table 4: Extended composition log

4.6.3.2 Learning phase (Offline)

Once enough data are recorded in a composition log, data

mining instances need to be constructed by extracting the

input/output values of web services as well as the path

information from the log. The extracted data are converted

to a suitable format to be processed by machine learning

algorithms. Each instance is characterized by the values of

six input/output parameters of web services and associated

with a class, namely EP, indicating the path that has been

followed during the execution when the parameters of web

services have been assigned to a specific value set. In the

bank loan composite service, there are six possible

alternative paths a class EP can take: EP1, EP2 … EP6. In

summary, the instance structure is as follows:

income, loan type, loan amount, loan years, name, SSN ,

[EP]

 The parameter income, loan amount, loan years and SSN

are numeric, whereas the attributes loan type and name are

nominal. For example, loan-type can take the finite set of

values: home_loan, education_loan, and car_loan.

 Once enough instances are created, it will constitute

inputs to a machine learning algorithm to establish a

relationship between the input/output parameters and the

paths taken at runtime. A set of classified instances is taken

by a learning schema to learn a way of classifying unseen

instances. Since the class EP of each instances is provided,

we uses supervised learning [25].

 Note that, in our approach, the algorithm will be trained

offline so the performance of the approach does not be

affected by the computation time needed for training the

algorithm.

 Different machine learning methods can be employed to

carry out path prediction. Cardoso (2008)[25] conducts a set

of experiments using Naïve Base (NB), J48, and Sequential

Minimal Optimization (SMO) methods with and without the

Multiboost (MB) method.

 J48 algorithm is Weka‟s (2004) implementation of the

C4.5 [27] decision three learner. Naïve Bayes (NB)

classifier technique is based on the so-called Bayesian

theorem. SMO [28] is a fast method to train SVM (Support

Vector Machines) [29]. MB [30] is an improved meta

learning algorithm of AdaBoost [31].

 Based on Cardoso‟s experiments, the results indicate that

the Multiboost Naïve Base (MB NB) approach is the data

mining algorithm that yields the best path prediction

accuracy results [25]. Therefore, this work employs the MB

NB as well.

4.6.3.3 Path prediction phase (at runtime)

Once the data is formatted and analyzed by a learning

method, it is now ready for classifying unknown classes,

i.e., predict the path that will be followed during the

execution.

 At runtime, a client (i.e., a service requester) for a bank

loan is required to provide data including personal data and

data describing the condition of the service being requested.

For example, income, loan type, loan amount, loan years,

Name, and SSN are examples of such data. Then, the data

needed for prediction are collected and formatted, and then

input to a classifier to classify into target classes, i.e.,

composition paths.

 The output of this step is the predicted probability of a

given execution path EPi will potentially be followed during

the execution of the bank loan composite service. This

important information is then utilized by the optimization

algorithms in order to only optimize the predicted execution

path.

… Instance Web service Service instance … Parameter/value EP

… LA112 RejectHomeLoan RHL01

…

int loannumber=12323;

string

email=‟ahmad@yahoo.com‟

string loantype=‟home-loan‟

FillLoanRequest,CheckL

oanType,CheckHomeLoa

n,RejectHomeLoan

… LA112 Archive

Application

NU22 … string tel=‟1726354‟;

string email=‟ali@hotmail.com‟

FillLoanRequest,CheckL

oanType,CheckHomeLoa

n,RejectHomeLoan,Notif

yHomeLoanClientArchei

veApplication

 … … … … … …

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1084 | P a g e

5. CONCLUSION

We have proposed an innovative approach that computes the

optimization by considering only the path that potentially

will be followed during the execution of a composition.

Organizations can use our approach to build their business

processes. By using our approach: (i) it is expected to

always generate business process that deliver the best

possible QoS, at the same time, meet global QoS

constraints, (ii) it is expected to generate business processes

in reasonable time. We are planning to evaluate the

approach using simulation software.

REFERENCES
[1] G. Baryannis, M. Carro, O. Danylevych, S. Dustdar,

D. Karastoyanova, K. Kritikos, L. Philipp, F.

Rosenberg, and B. Wetzstein, Overview of the State of

the Art in Composition and Coordination of Services,

S-CUBE consortium, Tech. Rep., July 2008. [Online].

Available: http://www.s-cube-network.eu/

[2] M.O. Hilari, Quality of Service (QoS) in SOA Systems.

A Systematic Review, Master thesis, Universitat

Politècnica de Catalunya, 2009.

[3] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic,

and S. Dustdar, Towards Composition as a Service - A

Quality of Service Driven Approach. Proc. 2009 IEEE

International Conference on Data Engineering, IEEE

Computer Society, 2009, 1733-1740.

[4] S. Dustdar, and M.P. Papazoglou, Services and

Service Composition - An Introduction, it -

Information Technology, 50, 2008, 086 - 092.

[5] D. Ardagna, and B. Pernici, Global and Local QoS

Guarantee in Web Service Selection, in C. Bussler and

A. Haller (Eds.), Business Process Management

Workshops, 3812 (Heidelberg: Springer Berlin 2006)

32-46.

[6] R. Ukor, and A. Carpenter, On Modelled Flexibility

and Service Selection Optimisation, Proc. 9th

Workshop on Business Process Modeling,

Development and Support, Montpellier, 2008, 335.

[7] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and

W. Aalst, Process Flexibility: A Survey of

Contemporary Approaches, in W. Aalst, J.

Mylopoulos, N. M. Sadeh, M. J. Shaw and C.

Szyperski (Eds.), Advances in Enterprise Engineering

I, 10 (Heidelberg: Springer Berlin 2008) 16-30.

[8] M.R. Garey, and D.S. Johnson, Computers and

Intractability: a Guide to the Theory of NP-

Completeness (New York: W. H. Freeman & Co.,

1979).

[9] M. Jaeger, G. Muhl, and S. Golze, QoS-Aware

Composition of Web Services: An Evaluation of

Selection Algorithms, in R. Meersman and Z. Tari

(Eds.), On the Move to Meaningful Internet Systems

2005, 3760 (Heidelberg: Springer Berlin 2007) 646-

661.

[10] T. Yu, Y. Zhang, and K.-J. Lin, Efficient algorithms

for Web services selection with end-to-end QoS

constraints, ACM Transactions on the Web (TWEB),

1(1), 2007, 6.

[11] G. Canfora, M.D. Penta, R. Esposito, and M.L

Villani, An approach for QoS-aware service

composition based on genetic algorithms, Proc. 2005

conference on Genetic and evolutionary computation,

Washington, ACM, 2005, 1069-1075.

[12] R. Wang, C.-H. Chi, and J. Deng, A Fast Heuristic

Algorithm for the Composite Web Service Selection,

in Q. Li, L. Feng, J. Pei, S. Wang, X. Zhou and Q.-M.

Zhu (Eds.), Advances in Data and Web Management,

5446 (Heidelberg: Springer Berlin 2009) 506-518.

[13] F. Lécué, Optimizing QoS-Aware Semantic Web

Service Composition, in A. Bernstein, D. Karger, T.

Heath, L. Feigenbaum, D. Maynard, E. Motta, and K.

Thirunarayan (Eds.), The Semantic Web - ISWC 2009,

5823 (Heidelberg: Springer Berlin 2009) 375-391.

[14] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,

and Q.Z Sheng, Quality driven web services

composition, Proc.12th international conference on

World Wide Web, Budapest, ACM, 2003, 411-421.

[15] L. Zeng, B. Benatallah, A.H.H Ngu, M. Duma, J.

Kalagnanam, and H. Chang, QoS-aware middleware

for Web services composition, IEEE Transactions on

Software Engineering, 30(5), 2004, 311-327.

[16] R. Ukor, and A. Carpenter, Flexible Service Selection

Optimization Using Meta-Metrics, Proc. 2009

Congress on Services – I, IEEE Computer Society ,

2009, 593-598.

[17] S. Neelavathi, and K. Vivekanandan, An Innovative

Quality of Service (QOS) based Service Selection for

Service Orchrestration in SOA, International Journal

of Scientific and Engineering Research, 2(4), 2011.

[18] O.K. Qtaish, and Z.B. Jamaludin, QoS criteria for

distinguishing the competing web services, Proc. 2011

International Conference on Data Engineering and

Internet Technology (DEIT), Bali, IEEE Computer

Society, 2011.

[19] K. Lee, J. Jeon, W. Lee, S.-H Jeong, and S.-W Park,

QoS for Web Services: Requirements and Possible

Approaches, W3C Web Services Architecture

Working Group, Tech. Rep., November 2003.

[Online]. Available: http://www.w3c.or.kr/kr-

office/TR/2003/ws-qos/ last accessed Feb, 2012.

[20] Mani, and A. Nagarajan, Understanding quality of

service for Web services, IBM developerWorks, Tech.

Rep., January 2002. [Online]. Available:

http://www.ibm.com/developerworks/webservices/libr

ary/ws-quality/index.html last accessed Feb, 2012.

http://www.s-cube-network.eu/
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.ibm.com/developerworks/webservices/library/ws-quality/index.html
http://www.ibm.com/developerworks/webservices/library/ws-quality/index.html

Osama Kayed Qtaish, Zulikha Bt Jamaludin, Massudi Mahmuddin / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1075-1085

1085 | P a g e

[21] M.C. Jaeger, G. Rojec-Goldmann, snd G. Muhl, QoS

aggregation for Web service composition using

workflow patterns, Proc. Enterprise Distributed

Object Computing Conference, Eighth IEEE

International, Washington, IEEE Computer Society,

2004, 149-159.

[22] Z. Guoping, Z. Huijuan, and W. Zhibin, A QoS-Based

Web Services Selection Method for Dynamic Web

Service Composition, Proc. 2009 First International

Workshop on Education Technology and Computer

Science, Hubei, IEEE Computer Society, 2009, 832-

835.

[23] S. Martello, and P. Toth, Algorithms for knapsack

problems, in S. Martello, G. Laporte, M. Minoux, and

C. Ribeiro (eds.), Surveys in Combinatorial

Optimization, 31 (Amsterdam: Annals of Discrete

Mathematics 1987) 213–258.

[24] M. Hifi, M. Michrafy, and A. Sbihi, Heuristic

algorithms for the multiple-choice multidimensional

knapsack problem, Journal of the Operational

Research Society, 55, 2004, 1323–1332.

[25] S. Sumathi, and S. Esakkirajan, fundamentals of

relational database management systems (Heidelberg:

Springer Berlin 2007).

[26] J. Cardoso, Applying Data Mining Algorithms to

Calculate the Quality of Service of Workflow

Processes, in P. Chountas, I. Petrounias and J.

Kacprzyk (Eds.), Intelligent Techniques and Tools for

Novel System Architectures, 109 (Heidelberg: Springer

Berlin 2008) 3-18.

[27] J.R. Quinlan, C4.5: programs for machine learning

(San Francisco: Morgan Kaufmann Publishers Inc.,

1993).

[28] J.C. Platt, Fast training of support vector machines

using sequential minimal optimization, in B.

Scholkopf, C. J. C. Burges and A. J. Smola (Eds.),

Advances in kernel methods, (MIT Press 1999) 185-

208.

[29] C. Cortes, and V. Vapnik, Support-vector networks,

Machine Learning, 20(3), 1995, 273-297.

[30] L. Todorovski, and S. Džeroski, Combining Multiple

Models with Meta Decision Trees, in D. Zighed, J.

Komorowski and J. Zytkow (Eds.), Principles of Data

Mining and Knowledge Discovery, 1910 (Heidelberg:

Springer Berlin 2000) 69-84.

[31] Y. Freund, and R.E. Schapire, A Short Introduction to

Boosting, Journal of Japanese Society for Artificial

Intelligence, 14(5), 1999, 771-780.

