
Nitesh Kumar Dixit, Sandeep Sharma, Surendra Yadav, Lav Saxena / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1010-1015

1010 | P a g e

 Vision-Based Autonomous Security Robot

Nitesh Kumar Dixit, Sandeep Sharma, Surendra Yadav, Lav Saxena
1, 3

 Deprtment of Electronics and Communication,
2, 4

 Department of Electrical Engineering,

Bhartiya Institute Of Engineering and Technology, Near Sawali Circle, Sikar.

Abstract
The goal of this paper is to develop a computer vision

system that enables a robot to navigate the hallways

of buildings using a generic webcam as the only sensor.

OpenCV2.0 programmed in C++ is the primary tool used to

develop the vision system software. Three algorithms were

developed to identify the center of the hallway and guide

the robot in the correct direction. The first two algorithms use

a generic filter (normal, median, or Gaussian) followed by

edge detection and then corner detection on the edge- detected

image. The first algorithm identifies the strongest vertical lines

on an image. Averaging the horizontal coordinates of the

vertical lines indicates the location of the center of the

hallway relative to the robot. The second algorithm utilizes the

trapezoidal shape of the hallway formed where the floor

meets the walls, as seen from the perspective of the

robot. The y-coordinates associated with the trapezoid‟s legs

are then compared to estimate robot orientation with respect

to the walls. The third algorithm uses color to segment the

floor from the rest of the features in the image (walls, ceiling,

and obstacles). Once again, the trapezoidal shape appears and

the center of the hallway is determined based on the location

of the highest y-valued pixels identified as floor pixels. Test

data indicates that none of these algorithms is singularly

sufficient; however, combining their results they can identify

the direction a robot must turn to remain in the center of the

hallway with 96.6% accuracy. Furthermore, leveraging the

results of multiple algorithms produces more robust

navigation, where one algorithm covers over the

shortcomings of another. The vision system architecture is

designed to execute algorithms in parallel. Such a structure

enables the addition and removal of algorithms without

adversely affecting the system as a whole. Further

algorithms may be developed and easily added to

improve navigation. Additionally, the system may

intelligently ignore results from algorithms that are

recognized as inappropriate for certain situations.

Keywords: Generic Filter, OpenCV2.0, Robot, Trapezoidal,

Vision.

I. Introduction
VBASR (Vision-Based Autonomous Security Robot) is

designed to patrol the floor hallway of the buildings.

Essentially, VBASR is a mobile, intelligent security camera

able to locate and navigate to specific rooms and

photograph any intruders it encounters. VBASR: The

primary goal for this paper is a robust, vision-based navigation

system. Sage et al. [1] performed similar work using

computer vision to detect motion for security systems.

DeSouza and Kak [2] present an exhaustive survey of

computer vision techniques, which provided inspiration

for VBASR. Other excellent resources for familiarization

with foundational computer vision concepts and

terminology include [3], [4], and [5]. VBASR is primarily a

machine vision project; therefore, a chassis that requires little

modification is desirable. Figure 1 shows the iRobot Create

chassis selected as the robot platform. A simple webcam

mounted in the cargo bay and an onboard computer are the

only additional hardware necessary for VBASR. Microsoft

Robotics Developers Studio (MRDS) is used to control the

iRobot Create and OpenCV2.0 computer vision libraries

programmed in C++ are utilized to implement the vision

algorithms.

Figure 1. iRobot Create and accessories

 Author Details

The first author is Nitesh Kumar Dixit, he is currently

working as Assistance Professor, in BIET, Sikar. He has

obtained his M.tech (Embedded System) degree from SRM

university, Chennai and B.E. (ECE) from SEC, Dundlod

(jhujhunu. Raj). His area of interest is Cryptography, Image

Nitesh Kumar Dixit, Sandeep Sharma, Surendra Yadav, Lav Saxena / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1010-1015

1011 | P a g e

Processing etc.

The Second author is Sandeep Sharma, he is currently

working as Sr. Lecturer, in BIET, Sikar. He is pursuing his

M.tech (Power System) degree from SKIT, Jaipur and B.E.

(EE) from Mardhur Engineering College, Bikaner (Raj.). His

area of interest is Power system, Robotics, Image Processing

etc.

The Third author is Surendra Yadav, he is currently working

as Lecturer, in BIET, Sikar. He is pursuring M.tech (Digital

Communication) degree from SEC, Dundlod and B.E. (ECE)

from SBCET, Jaipur (Raj.). His area of interest is Real Time

System, Cryptography, Image Processing etc.

The Forth author is Lav Saxena, he is currently working as

Lecturer, in BIET, Sikar. He is pursuring M.tech (Power

System) degree from Poornima Engg. College, Jaipur and B.E.

(EE) from KITE, Jaipur (Raj.). His area of interest is Power

Electronics, Signal and Image Processing etc.

Problem Description
Given an image of the hallway, such as the one shown in

Figure 2, how would a robot choose which direction to turn to

travel down the center of the hall? Humans can solve this

problem using vision intuitively without a concentrated effort.

VBASR must make such decisions using similar information,

but must accomplish it within the limitations of electronic

circuitry.

One obvious difficulty with the image in Figure 2 is the

lack of depth perception. Stereoscopic vision could be used

to ascertain depth information [6], but VBASR is designed

to use a single webcam, making depth perception on a

single image extremely difficult. Three different algorithms

were developed to navigate using a webcam as the only

sensor. The compilation of those three algorithms

constitutes VBASR: A resolver function then considers

information from each individual algorithm and determines

the final direction of travel.

Figure 2. Example image of hallway

A library of hallway images was used to test the accuracy

of the VBASR‟s vision system. Every image was

examined and the desired direction assigned by

human observation. The results calculated by the

algorithms were then compared to the desired navigation

results to evaluate the success rate of each individual

algorithm. A final requirement for VBASR is that it should

be able to react faster than humans so that it can

function properly in its environment. To do so, VBASR

must be able to process an image and begin responding

within 190ms [7]. Currently, VBASR processes about

ten images per second which meets the requirement.

ii. lines algorithm
The first approach attempted was to find the strongest

vertical lines in the image. Main vertical lines in a

hallway include windows, doors, pictures, etc. All of these

are found on the walls.

Figure 3. Lines algorithm theory

Thus, if the wall locations can be determined on either side,

then the average of the wall locations should be the

approximate center of the hallway, as shown in Figure 3. Red

lines represent „strong‟ vertical lines and the maroon line

represents the average of the x-values of the red lines.

Feature Extraction

To find the strongest vertical lines of the image, a line

(edge) detection algorithm is required. A filter must be used on

the image as a prerequisite for the line detection algorithm.

The edge detection algorithm detects many artifacts that are

undesirable, as seen in Figure 4. The best overall VBASR

algorithm utilizes a median blur, which returns the median of

the neighborhood of the given pixel. Figure 5 shows the

desired result when using edge detection on a filtered image.

The Canny algorithm [8] is used for all the edge

detection required by VBASR.

Figure 4. Edge detection on an un-blurred image

One major problem with the image in Figure 7 is

that the computer still has no simple way of identifying

the strongest vertical lines. Therefore, corner detection is

Nitesh Kumar Dixit, Sandeep Sharma, Surendra Yadav, Lav Saxena / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1010-1015

1012 | P a g e

used for the final stage of feature extraction. Corner

detection performed on the edge-detected image enables the

program to obtain data points on the lines, which can be

used to find the strongest vertical lines. Figure 8 shows all

of the corners detected by the algorithm marked with

small white circles. The x and y coordinates of each corner

is output to an array for further processing.

Processing
The next step is to find the strongest vertical lines using

the corners identified in Figure 6. First, the image from the

webcam is split into sixteen vertical bins. These bins allow a

histogram-like transformation by counting the number of

corners found within the different bins. The result is a sum

of the number of corners located in each bin. The number

of corners in each bin is compared to a constant value,

and, if the number of corners is greater than that threshold,

the bin is considered to have a strong vertical line.

Figure 5. Edge detection on a blurred image

Figure 6. Corner Detection on image in Figure 5

The image shown in Figure 7 is the same image used in

all the previous figures of this section. The thin white

lines delineate each bin, the black lines represent the

strongest vertical lines (as determined by the corners in

Figure 6), and the thick white line represents the x-value

average of the strongest vertical lines.

Figure 7. Lines algorithm processing example

To determine the direction found by the lines algorithm,

the average of the strong vertical lines is found and

compared to seven equally distributed direction bins (hard

left, left, etc.). If the thick white line in Figure 7 were located

on the left edge of the image, then it would evaluate to Hard

Left. Likewise, if it were in the center of the image, it

would evaluate to Straight.

Results And Shortcomings
In practice, the optimized lines algorithm has an accuracy

rating of 79.3%. The algorithm performed worst on images

requiring the action of Hard Right, where it achieved a

success rate of only 26%.

One shortcoming with this method appears when vertical lines

fall directly on the separation line for a bin. When this

happens, the corners found on that line may be split in

between two bins and the line may be ignored completely.

A second shortcoming occurs when VBASR is oriented

directly at a wall (i.e. the image does not contain the center of

the hallway at all). In these cases, the algorithm generally

finds only one or two strong vertical lines. Depending on

where these few lines are found, it may determine a wildly

inaccurate direction. If the lines algorithm only detects one or

zero strong lines, the algorithm fails and the resolver

function ignores the lines algorithm when deciding the

final direction for VBASR.

Iii. Corners Algorithm
After observing several images of the hallway, it was noted

that the floor in most images forms a trapezoidal shape, as

outlined in Figure 8. The trapezoid is created by the intersection

between the floor and the walls. Shi and Samarabandu [9]

called these lines corridor lines and used the intersection of the

corridor lines to aid navigation. VBASR utilizes the

corridor lines differently to develop the corners algorithm. If

one corridor line is higher on the image than the other, then

VBASR is facing the longer, lower corridor line‟s wall and

needs to adjust in the opposite direction. In Figure 8, the

corridor lines are marked in orange and the top of the

trapezoid is blue. In practice, the edge detection algorithm

actually finds the edge of the colored tile rather than the corner

of the floor and wall.

Nitesh Kumar Dixit, Sandeep Sharma, Surendra Yadav, Lav Saxena / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1010-1015

1013 | P a g e

Figure 8. Corners algorithm theory

Feature Extraction

The feature extraction for the corners algorithm is similar to

that of the lines algorithm. First, a blur is used on the

image to eliminate artifacts from the Canny line-detection

algorithm. After the Canny algorithm, corner detection is

performed on the line- detected image. In Figure 9, the

lower left and right-hand sections of the image are

boxed off to aid viewers in understanding how the

corners algorithm operates. These boxes denote the regions

where the algorithm searches for corridor lines.

Figure 9. Feature extraction for the corners algorithm

Frequently, the lines detected by the Canny algorithm

accurately define the corridor lines, but the corner-detection

algorithm fails to find a corner (denoted by white circles) on

the corridor lines. (Note that the left-hand box in Figure 9 is

an example of such a case.) To aid the corners algorithm,

two vertical lines are drawn on the image frame on both sides

of the image. The extra vertical lines help the algorithm

locate corners on the corridor lines,

 Processing
Each of the corners found within the boxed-off sections

of the image are generally on the legs of the trapezoid

(i.e. along the border where the floor meets the wall). For

each of the corners within a box, the x and y-values are

averaged to minimize the effect of outliers. The average y-

values are then compared and the leg with the higher y-value

indicates the direction VBASR should turn. The distance

between these final averages also indicates the strength of

the turn. Figure 10 shows an example of the complete

corners algorithm. The target marks indicate the averages

of the corners located in each box. When y-values for the

two target marks are compared, Figure 10 evaluates to Slight

Left. Improves the overall performance of the system

because it sometimes finds the correct direction for images

on which the other two algorithms fail.

Figure 10. Corners algorithm example

Surprisingly, the corners algorithm fails the most for Slight

Right and Slight Left images. Because the corners algorithm

averages all the corners found within the boxes it is more

likely to find large differences rather than smaller ones.

As such, the corners algorithm performs better for

large misalignments and, thus, complements the lines

algorithm well, since the lines algorithm tends to fail on the

Hard Left and Hard Right turns. An obvious shortcoming of

this algorithm is that not all of the corners found within

the boxed-off regions of the image are directly on the

trapezoidal legs.

Iv Colors Algorithm
The third algorithm implemented takes advantage of the

color difference between the floor and the walls. In most

buildings, the floor color is distinguishable from the

wall color. If the floor can be identified and marked, then the

image becomes a binary image of “floor” and “not-floor.”

Feature Extraction
An OpenCV library command called “flood fill” is used for

the colors algorithm. A single pixel is picked as the seed

point and then the neighborhood of that pixel is

evaluated. If the neighboring pixels are similar enough to

the seed point then all of the similar neighboring pixels are

set to a predefined value, such as the red shown in Figure 11.

Processing
After a binary image is achieved the resulting image is

scanned from the top down. The first row with more than

twenty red pixels is selected and the x-values for those

pixels are averaged. The result is considered the center of

the hallway where the thick pink line indicates the decision

line. Finally, the direction is determined by comparing the

location of the decision line with the seven direction bins, in

the same manner as the lines algorithm discussed above.

This particular example evaluates to Straight, as shown in

Figure 12.

Nitesh Kumar Dixit, Sandeep Sharma, Surendra Yadav, Lav Saxena / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1010-1015

1014 | P a g e

Figure 11. Example of the flood fill command

Figure 12. Colors algorithm with direction bins

Results and Shortcomings

Easily the best of the three algorithms, the colors algorithm has

an accuracy rating of 94.8%. This algorithm has no

particular category of images for which it performs poorly.

Unfortunately, many shortcomings still exist for this algorithm.

The first shortcoming is that the seed point cannot be

adjusted once it is set. It is possible for the seed point to fall

on the wall instead of the floor. If this occurs, the flood fill

command will paint the walls red, which is clearly

undesirable.

The second shortcoming is that tiles of different colors

can confuse the algorithm. To work around these

shortcomings several different seed points are used. The

pixel value at each seed point is identified and if that point

is either white or orange (to catch the occasional orange tile)

then it is evaluated using flood fill.

V. Resolver
After all three algorithms independently determine a

direction to navigate, they are resolved into a single

direction for the entire system. The resolver ignores

algorithms when it detects a failure (e.g. the color algorithm

is ignored if it paints the walls or ceiling red). Since the

resolver evaluates each algorithm in parallel, the system

architecture is such that algorithms can be added and

removed without compromising the integrity of the system

as a whole.

Vi. Results
Resolving the lines algorithm, corners algorithm, and

colors algorithm enables VBASR to achieve an overall

accuracy rate of 96.6%, as shown in Table 1. Table 1 also

details the success rates associated with each algorithm in the

seven general navigation directions. Individually, the colors

algorithm outperforms both lines and corners algorithms,

however, if either of these algorithms is eliminated then the

resolver‟s success rate decreases.

TABLE 1. Final Vision System Results (%)

 Lines Corners Colors Resolved

Hard Left 33.3 13.3 93.3 93.3

Left 87.9 55.2 93.1 100

Slight Left 97.1 28.6 91.4 94.3

Straight 96.4 48.2 96.4 98.2

Slight

Right

97.6 29.3 92.7 100

Right 57.1 46.9 96.9 95.9

Hard Right 26.3 21.1 100 94.7

Totals 70.8 34.7 94.8 96.6

Due to the nature of the resolving function, the values for the

lines and corners algorithm shown in Table 1 are not the

highest percentages achieved for each individual algorithm.

This phenomenon occurs because of the interplay between the

various algorithms during resolution.

TABLE 2. Optimized Corners Algorithm (%)

 Lines Corners Colors Resolved

Hard Left 73.3 46.7 93.3 73.3

Left 79.3 89.7 93.1 98.3

Slight Left 100.0 68.6 91.4 97.1

Straight 100.0 69.6 96.4 100.0

Slight

Right

97.6 51.2 92.7 100.0

Right 45.9 87.8 96.9 90.8

Hard

Right

10.5 52.6 100.0 57.9

Totals 72.4 66.6 94.8 88.2

The highest accuracy ratings for the lines and corners

algorithms are 79.3% and 66.6% respectively. If the

parameters are set to optimize the lines or corners algorithms,

the total resolved percentage decreases, as demonstrated in

Table 2. As stated above, when either of the lower percentage

algorithms is removed, the resolved accuracy rating lowers,

which demonstrates the benefit of using multiple algorithms in

the vision system‟s parallel architecture. Initial testing of the

vision system on the iRobot Create platform yielded

promising results. A webcam was mounted to the cargo bay of

the robot and the robot was manually controlled to follow the

real-time decisions of the resolver. Observing the resulting

navigation behavior, it was determined that with the addition

Nitesh Kumar Dixit, Sandeep Sharma, Surendra Yadav, Lav Saxena / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1010-1015

1015 | P a g e

of control software VBASR will be capable of autonomously

navigating down the center of the hallway.

Vii. Future Work
The discussion in this paper focuses on navigation of a

hallway where obstacles are located only along the walls.

Although not generally observed in the halls of the

engineering building, it is possible that obstacles may be

placed in the center of the hallway, obstructing the path of

the robot. To handle these situations, obstacle avoidance

will be implemented utilizing an algorithm similar to the

colors algorithm. Creating a binary image of “floor” and

“not-floor” enables simple detection of obstacles because the

obstacles should generally be a different color than the floor.

The orange tiles in Figure 11 that are not marked red give

a general feel for how the algorithm could identify obstacles.

These orange tiles also pose a challenge as they should be

identified as “floor” rather than “not-floor.” Using the more

robust colors algorithm shown in Figure 12, the floor can

be identified, and, thus, the obstacles will be isolated.

The colors algorithm shown in Figure 12 evaluates the

seed points for either orange or white. Any other color

would be identified as an obstacle. Other possibilities

for obstacle avoidance have been explored by Marques

and Lima [10] as well as Ohya et al. [11] After adding

obstacle avoidance, the vision system will be integrated

with Microsoft Robotics Developers Studio to enable

autonomous control of the iRobot Create, completing

VBASR‟s primary navigational requirements. From here,

more sophisticated work, such as motion detection (to locate

intruders), will begin.

Viii. Acknowledgment
The authors thank BIET‟s Electronics and Electrical

Engineering Department sponsoring VBASR Vision

System.

Ix. References
[1] Sage, K., and S. Young. "Security Applications of

Computer Vision." IEEE Transactions on Aerospace and

Electronic Systems 14.4 (1999): 19-29. Aug. 2002.

[2] DeSouza, G. N., and A. C. Kak. "Vision for Mobile

Robot Navigation: A Survey." IEEE Transactions on

Pattern Analysis and Machine Intelligence 24.2 (2002):

237-67. Aug. 2002.

[3] Davies, E. R. Machine Vision: Theory, Algorithms,

Practicalities. San Francisco: Morgan Kaufmann, 2005.

[4] Forsyth, D., and J. Ponce. Computer Vision: a Modern

Approach. Upper Saddle River, N.J.: Prentice Hall,

2003.

[5] Shapiro, Linda G., and George C. Stockman. Computer

Vision. Upper Saddle River, NJ: Prentice Hall, 2001.

[6] Scott, D., and F. Aghdasi. "Mobile Robot Navigation In

Unstructured Environments Using Machine Vision."

IEEE AFRICON 1 (1999): 123-26. Aug. 2002.

[7] Kosinski, R. J. "Literature Review on Reaction Time."

Clemson University, Aug. 2009. 10 Nov. 2009.

http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm

[8] Canny, J. "A Computational Approach to Edge

Detection." IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI-8.6 (1986): 679-98. Jan.

2009.

[9] Shi, W., and J. Samarabandu. "CORRIDOR LINE

DETECTION FOR VISION BASED INDOOR ROBOT

NAVIGATION." IEEE CCECE (2006): 1988- 991. Jan.

2007.

[10] Marques, C., and P. Lima. "Multisensor Navigation for

Nonholonomic Robots in Cluttered Environments."

IEEE Transactions on Robotics and Automation 11.3

(2004): 70-82. Oct. 2004.

[11] Ohya, I., A. Kosaka, and A. Kak. "Vision-Based

Navigation by a Mobile Robot with Obstacle Avoidance

Using Single-Camera Vision and Ultrasonic Sensing."

IEEE Transactions on Robotics and Automation 14.6

(1998): 969-78. Aug. 2002.

http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm

