
Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal 

of Engineering Research and Applications (IJERA)    ISSN: 2248-9622                                                       

www.ijera.com     Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795 

785 | P a g e  

 BIDIRECTIONAL INTEGRATION OF FUZZY LOGIC WITH 

GENETIC ALGORITHM AND LEARNING WITH GENETIC 

FUZZY SYSTEM  

Riidhei Malhotra
1
, Madhu Chauhan

2,
 , Uday Pratap Singh

3
, and Mukul 

Pathak
4
 

1
Department of Information Technology, Galgotias College of Engineering & Technology, Greater Noida (U.P.), 

India 
2,3,4

Department of Computer Science & Engineering, Galgotias College of Engineering &Technology, Greater 

Noida(u.p), India  

 

                                           

ABSTRACT 
Recently, numerous papers and applications 

combining Fuzzy Logic (FL) and Genetic 

Algorithms (GAs) have become known, and there 

is an increasing interest in the integration of these 

two topics. In this paper we explore this 

combination from the bidirectional integration: 

The use of FL based techniques for both 

improving GA behavior and modeling GA 

components, the results obtained have been called 

fuzzy genetic algorithms (FGAs), and includes 

learning with genetic fuzzy systems i.e its different 

approaches. An analysis of genetic fuzzy rule 

based system and Genetic Tuning of Fuzzy Rule 

Based Systems including Basic Models. 
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1 INTRODUCTION 
A Fuzzy Genetic Algorithm (FGA) is considered as a 

Genetic Algorithm (GA )that uses fuzzy logic based 

techniques or fuzzy tools to improve the GA behavior 

modeling different GA components. An FGA may be 

defined as an ordering sequence of instructions in 

which some of the instructions or algorithm 

components may be designed with fuzzy logic based 

tools, such as, fuzzy operators and fuzzy connectives 

for designing genetic operators with different 

properties, fuzzy logic control systems for controlling 

the GA parameters according to some performance 

measures, fuzzy stop criteria, representation tasks, 

etc. 

 

 

 

 

1.1 GENETIC ALGORITHM (GA) 

Genetic algorithms (GAs) have had a great measure 

of success in search and optimization problems. 

The reason for a great part of their success is their 

ability to exploit the information accumulated about 

an initially unknown search space in order to bias 

subsequent searches into useful subspaces, i.e., their 

adaptation. This is their key feature, particularly in 

large, complex, and poorly understood search spaces, 

where classical search tools (enumerative, 

heuristic...) are inappropriate, offering a valid 

approach to problems requiring efficient and 

effective search techniques. GAs is general purpose 

search algorithms which use principles inspired by 

natural genetic populations to evolve solutions to 

problems [9]. The basic idea is to maintain a 

population of chromosomes, which represent 

candidate solutions to the concrete problem that 

evolves over time through a process of competition 

and controlled variation. Each chromosome in the 

population has an associated fitness to determine 

which chromosomes are used to form new ones in the 

competition process, which is called selection. The 

new ones are created using genetic operators such as 

crossover and mutation. 

A GA starts off with a population of randomly 

generated chromosomes, and advances toward better 

chromosomes by applying genetic operators modeled 

on the genetic processes occurring in nature. The 

population undergoes evolution in a form of natural 

selection. During successive iterations, called 

generations, chromosomes in the population are rated 

for their adaptation as solutions, and on the basis of 

these evaluations, a new population of chromosomes 

is formed using a selection mechanism and specific 

genetic operators such as crossover and mutation. An 

evaluation or fitness function (f) must be devised for 
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each problem to be solved. Given a particular 

chromosome, a possible solution, the fitness function 

returns a single numerical fitness, which is supposed 

to be proportional to the utility or adaptation of the 

solution represented by that chromosome. 

Although there are many possible variants of the 

basic GA, the fundamental underlying mechanism 

consists of three operations: 

1. Evaluation of individual fitness, 

2. Formation of a gene pool (intermediate population) 

through selection mechanism, and 

3. Recombination through crossover and mutation 

operators. 

 

1.2 FUZZY LOGIC (FL) 

Fuzzy logic is a form of many-valued logic; it deals 

with reasoning that is approximate rather than fixed 

and exact. In contrast with traditional logic theory, 

where binary sets have two-valued logic: true or 

false, fuzzy logic variables may have a truth 

value that ranges in degree between 0 and 1. Fuzzy 

logic has been extended to handle the concept of 

partial truth, where the truth value may range 

between completely true and completely false. 

Furthermore, when linguistic variables are used, 

these degrees may be managed by specific functions. 

Linguistic variables 

While variables in mathematics usually take 

numerical values, in fuzzy logic applications, the 

non-numeric linguistic variables are often used to 

facilitate the expression of rules and facts. A 

linguistic variable such as age may have a value such 

as young or its antonym old. However, the great 

utility of linguistic variables is that they can be 

modified via linguistic hedges applied to primary 

terms. The linguistic hedges can be associated with 

certain functions. 

1.3 LEARNING WITH GENETIC 

ALGORITHMS 

Although GAs are not learning algorithms, they may 

offer a powerful and domain-independent search 

method for a variety of learning tasks. In fact, there 

has been a good deal of interest in using GAs for 

machine learning problems([7,10,8]).Three 

alternative approaches, in which GAs have been 

applied to learning processes, have been proposed, 

the Michigan , the Pittsburgh ([17]), and the Iterative 

Rule Learning (IRL) approaches [20]. In the first one, 

the chromosomes correspond to classifier rules which 

are evolved as a whole, whereas in the Pittsburgh 

approach, each chromosome encodes a complete set 

of classifiers. In the IRL approach each chromosome 

represents only one rule learning, but contrary to the 

first, only the best individual is considered as the 

solution, discarding the remaining chromosomes in 

the population. Below , we will describe them briefly. 

Michigan  Approach. The chromosomes are 

individual rules and a rule set is represented by the 

entire population. The collection of rules is modified 

over time via interaction with the environment. This 

model maintains the population of classifiers with 

credit assignment, rule discovery 

and genetic operations applied at the level of the 

individual rule. A genetic learning process based on 

the Michigan approach receives the name of 

Classifier System. A complete description is to be 

found in [4]. 

Pittsburgh  Approach. Each chromosome encodes a 

whole rule sets. Crossover serves to provide a new 

combination of rules and mutation provides new 

rules. In some cases, variable-length rule bases are 

used, employing modified genetic operators for 

dealing with these variable-length and position 

independent genomes. This model was initially 

proposed by Smith in 1980 [17]. Recent instances of 

this approach may be found in [10]. 

Iterative Rule Learning approach. In this latter 

model, as in the Michigan one, each chromosome in 

the population represents a single rule, but contrary to 

the Michigan one, only the best individual is 

considered to form part of the solution, discarding the 

remaining chromosomes in the population. Therefore, 

in the iterative model, the GA provides a partial 

solution to the problem of learning. In order to obtain 

a set of rules, which will be a true solution to the 

problem, the GA has to be placed within an iterative 

scheme similar to the following: 

1. Use a GA to obtain a rule for the system. 

2. Incorporate the rule into the final set of rules. 

3. Penalize this rule. 

4. If the set of rules obtained till now is adequate to 

be a solution to the problem, the system ends up 

returning the set of rules as the solution. Otherwise 

return to step 1. 

The main difference with respect to the Michigan 

approach is that the fitness of each chromosome is 

computed individually, without taking into account 

cooperation with other ones. This substantially 

reduces the search space, because in each sequence of 

iterations only one rule is searched. 

 

2. GENETIC FUZZY RULE BASED 

SYSTEMS (GFRBS) 
The idea of a Genetic FRBS is that of a genetic FRBS 

design process which incorporates genetic techniques 

to achieve the automatic generation or modification 

of its KB (KNOWLEDGE BASE) (or a part of it). 

This generation or modification usually involves a 

tuning/learning process, and consequently this 

http://en.wikipedia.org/wiki/Many-valued_logic
http://en.wikipedia.org/wiki/Reasoning
http://en.wiktionary.org/wiki/binary
http://en.wikipedia.org/wiki/Two-valued_logic
http://en.wikipedia.org/wiki/Truth_value
http://en.wikipedia.org/wiki/Truth_value
http://en.wikipedia.org/wiki/Linguist
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process plays a central role in GFSs. The objective of 

this tuning/learning process is optimization, i.e., 

maximizing or minimizing a certain function 

representing or describing the behavior of the system. 

It is possible to define two different groups of 

optimization problems in FRBSs. The first group 

contains those problems where optimization only 

involves the behavior of the FRBS, while the second 

one refers to those problems where optimization 

involves the global behavior of the FRBS and an 

additional system. The first group contains problems 

such as modeling, classification, prediction and, in 

general, identification problems. In this case, the 

optimization process searches for an FRBS able to 

reproduce the behavior of a certain target system. The 

most representative problem in the second group is 

control, where the objective is to add an FRBS to a 

controlled system in order to obtain a certain overall 

behavior. Next, we analyze some aspects of the 

Genetic FRBSs. 

 

2.1 Obtaining the Knowledge for an FRBS 

As a first step, it is interesting to distinguish between 

tuning and learning problems. In tuning problems, a 

predefined RB is used and the objective is to find a 

set of parameters defining the Database( DB). 

In learning problems, a more elaborate process 

including the modification of the Rule Base( RB) is 

performed. We can distinguish between three 

different groups of GFSs depending on the KB 

components included in the genetic learning process. 

 

Genetic tuning of the DB. The tuning of the scaling 

functions and fuzzy membership functions is an 

important task in the design of fuzzy systems. It is 

possible to parameterize the scaling functions or the 

membership functions and adapt them using GAs to 

deal with their parameters according to a fitness 

function. As regards to the tuning of membership 

functions, several methods have been proposed in 

order to define the DB using GAs. Each chromosome 

involved in the evolution process represents different 

DB definitions, i.e., each chromosome contains a 

coding of the whole set of membership functions 

giving meaning to the linguistic terms. Two 

possibilities can be considered depending on whether 

the fuzzy model nature is descriptive or approximate, 

either to code the fuzzy partition maintaining a 

linguistic description of the system, or to code the 

rule membership functions tuning the parameters of a 

label locally for every rule, thereby obtaining a fuzzy 

approximate model. 

 

Genetic learning of the RB. All the methods 

belonging to this family involve the existence of a 

predefined collection of fuzzy membership functions 

giving meaning to the linguistic labels contained in 

the rules, a DB. On this basis GAs are applied to 

obtain a suitable rule base, using chromosomes that 

code single rules or complete rule bases. 

Genetic learning of the KB. There are many 

approaches for the genetic learning of a complete KB 

(RB and DB). We may find approaches presenting 

variable chromosome lengths, others coding a fixed 

number of rules and their membership functions, 

several working with chromosomes encoding single 

control rules instead of a complete KBs, etc. 

 

3. Genetic Tuning of Fuzzy Rule Based 

Systems: Basic Models 
The tuning of the scaling functions and fuzzy 

membership functions is an important task in the 

design of fuzzy systems. It is possible to parameterize 

the scaling functions or the membership functions 

and adapt them using Genetic Algorithms to deal 

with their parameters according to a fitness function. 

As regards to the tuning of membership functions, 

several methods have been proposed in order to 

define the Data Base (DB) using GAs. Each 

chromosome involved in the evolution process 

represents different DB definitions, i.e., each 

chromosome contains a coding of the whole set of 

membership functions giving meaning to the 

linguistic terms. Two possibilities can be considered 

depending on whether the fuzzy model nature is 

descriptive or approximate, either to code the fuzzy 

partition maintaining a linguistic description of the 

system, or to code the rule membership functions 

tuning the parameters of a label locally for every rule, 

thereby obtaining a fuzzy approximate model. 

In this we analyze the use of GAs for the tuning of 

DBs according to the two mentioned areas, the 

adaptation of contexts using scaling functions and the 

tuning of membership functions, we shall present 

briefly them. 

 

3.1 Adapting the Context 
The use of scaling functions that are applied to the 

input and output variables of an FRBS, allows us to 

work with normalized universes of discourse where 

the fuzzy membership functions are defined. These 

scaling functions could be interpreted as gains 

associated with the variables (from a control 

engineering point of view) or as context information 

that translates relative semantics into absolute ones 

(from a knowledge engineering point of view). If 

using scaling functions, it is possible to fix them or to 

parameterize the scaling functions and adapt them. 

Linear and non-linear contexts have been used. 

Linear context. It is the simplest scaling. The 

parameterized function is defined by means of two 

parameters (one, if used as a scaling factor). The 
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effect of scaling is that of linearly mapping the real 

interval [a,b] into a reference interval (e.g., [0,1]). 

The use of a scaling factor maps the interval [-a,a] in 

a symmetrical reference interval (e.g., [-1,1]). This 

kind of context is the most broadly applied one. 

Genetic techniques have been applied to adapting the 

parameters defining the scaling factors and linear 

scaling functions ([16]). 

Nonlinear context. The main disadvantage of linear 

scaling is the fixed relative distribution of the 

membership functions (uniformly distributed or not) 

once they have been generated. To solve this problem 

nonlinear scaling is used allowing us to obtain a 

modified relative distribution and a change in the 

shape of the membership functions. The definition of 

parameterized nonlinear scaling functions is more 

complex than in the linear case and a larger number 

of parameters are needed. The process actually 

requires two steps: previous scaling (linear) and 

nonlinear mapping. Parameterized potential and sig 

modal ([11]) functions have been used when applying 

Gas to adapt the nonlinear context. Usually, the 

parameters (real numbers) constitute the genes of the 

chromosomes without binary representation. 

Figure 3.1 shows a normalized fuzzy partition (top), a 

nonlinear adaptation with lower granularity for 

middle or for extreme values (center) and lower 

granularity for lowest or for highest 

Values  (bottom). 

 

3.2 Tuning the Membership Functions 

Another element of the KB is the set of membership 

functions. This is a second point where Gas could be 

applied with a tuning purpose. As in the previous 

case of scaling functions, the main idea is the 

definition of parameterized functions and the 

subsequent adaptation of parameters. Some 

approaches are found to be in [1, 12, 14]. The 

different proposals differ in the coding scheme and 

the management of the solutions (fitness functions,) 

 

3.2.1 Shape of the Membership Functions 

Two main groups of parameterized membership 

functions have been proposed and applied: piecewise 

linear functions and differentiable functions. 

 

 

Fig 3.1: Non Linear  Contexts Adaptation 
 

Fig 3.2: Descriptive Versus Approximate Fuzzy     

Models 
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Piecewise linear functions. The most broadly used 

parameterized membership functions in the field of 

GFSs are triangles, in some cases these are isosceles 

and other times they are irregular. A second 

possibility is trapezoidal membership functions. Each 

parameter of the function constitutes a gene of the 

chromosome that may be a binary code representing 

the parameter or a real number (the parameter itself,). 

Gaussian, bell and sigmoidal are examples of 

parameterized differentiable functions. 

 

3.2. Scope of the Semantics 

The genetic tuning process of membership functions 

is based on two variants, depending on the fuzzy 

model nature, whether approximate ([12]) or 

descriptive (5, 14]). The descriptive fuzzy model is 

essentially a qualitative expression of the system. A 

KB in which the fuzzy sets giving meaning 

(semantic) to the linguistic labels are uniformly 

defined for all rules included in the RB. It constitutes 

a descriptive approach since the linguistic labels take 

the same meaning for all the fuzzy rules contained in 

the RB. Concluding Remarks 27 In the approximate 

fuzzy model a KB is considered for which each fuzzy 

rule presents its own meaning, i. e., the linguistic 

variables involved in the rules do not take as their 

values any linguistic label from a global term set. In 

this case, the linguistic variables become fuzzy 

variables. The system applies local semantics. Figure 

3.2 and the examples described in the following 

paragraphs illustrate these two variants, and their 

particular aspects reflected in the coding scheme. 

 

 

3.2.3 The Approximate Genetic Tuning Process 

As mentioned earlier, each chromosome forming the 

genetic population will encode a complete KB. More 

concretely, all of them encode the RB, R, and the 

difference between them is the fuzzy rule 

membership functions, i. e., the DB definition. 

Taking into account a parametric representation with 

triangular-shaped membership functions based on a 

3-tuple of real values, each rule Ri : IF x1 is Ai1 and 

... and xn is Ain THEN y is Bi, of a certain KB 

(KBl), is encoded in a piece of chromosome Cli: Cli 

= (ai1; bi1; ci1; : : : ; ain; bin; cin; ai; bi; ci) where 

Aij , Bi have the parametric representation (aij ; bij ; 

cij), (ai; bi; ci), i = 1; : : : ;m (m represents the 

number of rules), j = 1; : : : ; n (n is the number of 

input variables). Therefore the complete RB with its 

associated DB is represented by a complete 

chromosomeCl: Cl = Cl1 Cl2 ::: Clm .This 

chromosome may be a binary or a real coded 

individual. 

 

3.2.4 The Descriptive Genetic Tuning Process 

In this second genetic tuning process each 

chromosome encodes a different DB definition based 

on the fuzzy domain partitions. A primary fuzzy 

partition is represented as an array composed by 3 _ 

N real values, with N being the number of terms 

forming the linguistic variable term set. The complete 

DB for a problem, in which m linguistic variables are 

involved, is encoded into a fixed length real coded 

chromosome Cj built up by joining the partial 

representations of each one of the variable fuzzy 

partitions, 

Cji = (ai1; bi1; ci1; : : : ; aiNi ; biNi ; ciNi) 

Cj = Cj1 Cj2 ::: Cjm 

where Cji represents the fuzzy partition 

corresponding to the i � th variable. 

 

4. Learning with Genetic Fuzzy Systems: 

Pittsburgh Approach 
 

4.1 Introduction 

Recently, there has been a growing interest in using 

Genetic Algorithms (GAs) for machine learning 

problems, appearing different genetic learning 

approaches. One of them, the Pittsburgh approach 

adopts the view that each individual in a population, 

each chromosome, encodes a whole rule sets. 

Crossover serves to provide a new combination of 

rules and mutation provides new rules. In some cases, 

variable-length rule bases are used, employing 

modified genetic operators for dealing with these 

variable-length and position independent genomes. 

This model was initially proposed by Smith in 1980 

[17]. Here, we shortly describe the use of Genetic 

Fuzzy Systems (GFSs) with this learning approach 

for learning Rule Bases (RB) and Knowledge Bases 

(KB) for Fuzzy Rule Bases Systems (FRBSs). 

 

4.2 Genetic Learning of RB 

It is possible to represent the RB of an FRBS with 

three different representations. These representations 

are: relational matrix, decision table and list or set of 

rules. The Pittsburgh approach has been applied to 

learn rule bases in two different situations. The first 

situation refers to those systems using a complete 

rule base represented by means of a decision table or 

a relational matrix. The second situation is that of 

FRBSs, whose RB is represented using a list or set of 

fuzzy rules. 

 

4.2.1 Using a Complete RB 

A tabular representation guarantees the completeness 

of the knowledge of the FRBS in the sense that the 

coverage of the input space (the Cartesian product of 

universes of the input variables) is only related to the 

level of coverage of each input variable (the 

corresponding fuzzy partitions), and not to the rules. 
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Decision tables. A possible representation for the RB 

of an FS is a decision table. It is a classical 

representation used in different GFSs. A chromosome 

is obtained from the decision table by going row-wise 

and coding each output fuzzy set as an integer or any 

other kind of label. It is possible to include the ―no 

output‖ definition in a certain position, using a ―null‖ 

label ([18]). 

Relational matrices. Occasionally GAs are used to 

modify the fuzzy relational matrix (R) of a Fuzzy 

System with one input and one output. The 

chromosome is obtained by concatenating the m _ n 

elements of R, where m and n are the number of 

fuzzy sets associated with the input and output 

variables respectively. The elements of R that will 

make up the genes may be represented by binary 

codes or real numbers. 

 

4.2.2 Using a Partial RB 

Neither the relational nor the tabular representations 

are adaptable to systems with more than two or three 

input variables because of the dimension of a 

complete RB for these situations. This fact stimulated 

the idea of working with sets of rules. In a set of rules 

representation the absence of applicable rules for a 

certain input that was perfectly covered by the fuzzy 

partitions of individual input variables is possible. As 

a counterpart to the loss of completeness, this 

representation allows compressing several rules with 

identical outputs into a singular rule and this is a 

really important question as the dimension of the 

system grows. There are many different methods for 

coding the rule base in this kind of evolutionary 

system. The code of the rule base is usually obtained 

by concatenating rules codes. 

Rules of fixed length. A first approach is to 

represent a rule with a code of fixed length and 

position dependent meaning. The code will have as 

many elements as the number of variables in the 

system. A possible content of these elements is: a 

label pointing to a certain fuzzy set in the fuzzy 

partition of the variable or a binary string with a bit 

per fuzzy set in the fuzzy partition of the variable 

coding the presence or absence of the fuzzy set in the 

rule [15]. 

Rules of variable length. Codes with position 

independent meaning and based on pairs {variable, 

membership function} (the membership functions is 

described using a label) are used in . 

 

4.3 Genetic Learning of KB 

The simultaneous use as genetic material of the DB 

and the RB of an FRBS has produced different and 

interesting results. The most general approach is the 

use of a set of parameterized membership functions 

and a list of fuzzy rules that are jointly coded to 

generate a chromosome, then applying a Pittsburgh-

type GA to evolve a population of such 

chromosomes. This kind of GFSs use chromosomes 

Containing two sub-chromosomes that encode 

separately, but not independently, the DB and the 

RB. It is possible to maintain, at this point, the same 

division that was stated when talking about genetic 

learning of RBs with a Pittsburgh approach: learning 

complete rule bases or partial rule bases. 

 

4.3.1 Using a Complete RB 

In the rule base is represented as a fuzzy relation 

matrix (R), and the GA modifies R or the fuzzy 

membership functions (triangular) or both of them 

simultaneously, on a Fuzzy Logic Controller (FLC) 

with one input and one output variables. Each gene is 

a real number. When generating the optimal fuzzy 

relation matrix this real number corresponds to a 

fuzzy relation degree whose value is between 0 and 

1. The genetic string is obtained by concatenating the 

m _ n real numbers that constitute R. When finding 

simultaneously the optimal rule base and the fuzzy 

membership functions, each chromosome allocates 

two sub-chromosomes: the genes of the rule base and 

the genes of the fuzzy membership functions. Both 

sub-chromosomes are treated as independent entities 

as far as crossover and mutation are concerned but as 

a single entity as far as reproduction is concerned. A 

slightly different approach is to use a TSK-type rule 

base, structuring its genetic code as if it came from a 

decision table. In this case, the contents of the code 

of a rule base is an ordered and complete list 

containing the consequents of all possible rules, 

where the antecedents are implicitly defined as a 

function of the position the consequent occupies in 

the list. The fuzzy membership functions constitute a 

first sub-chromosome while the coefficients of the 

consequents for a TSK fuzzy model constitute the 

second sub-chromosome. One gene is used to code 

each coefficient of a TSK-type,  a single coefficient 

is considered for the output. 

 

4.3.2 Using a Partial RB 

Liska and Melsheimer  use a rule base defined as a 

set of a fixed number of rules, and code each rule 

with integer numbers that define the membership 

function related with a certain input or output 

variable that is applied by the rule (membership 

functions for every variable are ordered). The 

systems use radial membership functions coded 

through two real numbers (two genes). The genetic 

string is obtained by concatenating the two genes in 

each membership function. There are many different 

methods for coding the rule base in this kind of 

evolutionary system. The code of the rule base is 

usually obtained by concatenating rule codes. To 
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represent a single rule, it is possible to use a position 

dependent code with as many elements as the number 

of variables of the system. A possible content in these 

elements is: a label pointing to a certain fuzzy set in 

the fuzzy partition of the variable or a binary string 

with a bit per fuzzy set in the fuzzy partition of the 

variable. Using an approximate approach, include the 

definition of the membership functions into the rules, 

coding each rule through the corresponding set of 

membership functions. 

 

5. Learning with Genetic Fuzzy Systems: 

Iterative Rule Learning Approach 
 

5.1 Introduction 

Since the beginning of the 80s there has been 

growing interest in applying methods based on 

Genetic Algorithms (GAs) to automatic learning 

problems, especially the learning of production rules 

on the basis of attribute-evaluated example sets. The 

main problem in these applications consists of 

finding a "comfortable" representation in the sense 

that it might be capable both of gathering the 

problem’s characteristics and representing the 

potential solutions. In recent literature we may find 

different algorithms that use a new learning model 

based on GAs, the Iterative Rule Learning (IRL) 

approach [20]. In the latter model, as in the Michigan 

one, each chromosome in the population represents a 

single rule, but contrary to the latter, only the best 

individual is considered as the solution, discarding 

the remaining chromosomes in the population. This 

model has been used in papers such as [20, 13]. 

 

5.2 IRL Approach 

In this approach the GA provides a partial solution to 

the problem of learning, and attempts to reduce the 

search space for the possible solutions. In order to 

obtain a set of rules, which will be a true solution to 

the problem, the GA has to be placed within an 

iterative scheme similar to the following: 

1. Use a GA to obtain a rule for the system. 

2. Incorporate the rule into the final set of rules. 

3. Penalize this rule. 

4. If the set of rules obtained is adequate to represent 

the examples in the training set, the system ends up 

returning the set of rules as the solution. Otherwise 

return to step 1. 

A very easy way to penalize the rules already 

obtained, and thus be able to learn new rules, consists 

of eliminating from the training set all those 

examples that are covered by the set of rules obtained 

previously. This learning way is to allow "niches" 

and "species" formation. Species formation seems 

particularly appealing for concept learning, 

considering the process as the learning of multimodal 

Concepts. The main difference with respect to the 

Michigan approach is that the fitness of each 

chromosome is computed individually, without 

taking into account cooperation with other ones. This 

Reduces substantially the search space, because in 

each sequence of iterations only one rule is searched. 

In the literature we can find some genetic learning 

processes that use this model such as SLAVE, SIAVE 

[20] and the genetic generation process. These three 

genetic learning processes use the IRL approach with 

light difference: SLAVE launches a new GA to find a 

new rule after having eliminated the examples 

covered by the last rule obtained. SLAVE was 

designed to work with or without linguistic 

information .SIAVE uses a single GA that goes on 

detecting rules and eliminating the examples covered 

by the latter. SIA can only work with crisp data. The 

genetic generation process runs a GA for obtaining 

the best rule according to different features, assigns a 

relative covering value to every example, and 

removes the examples with a covering value greater 

than a constant. 

From the description above, we may see that in order 

to implement learning algorithm based on GAs using 

the IRL approach, we need, at least, the following: 

1. A criterion for selecting the best rule in each 

iteration, 

2. A penalty criterion, and 

3. A criterion for determining when enough rules are 

available to represent the examples in the training set. 

The first criterion is normally associated with one or 

several characteristics that are desirable so as to 

determine good rules. Usually criteria about the rule 

strength have been proposed (number of examples 

covered), criteria of consistency of the rule or criteria 

of simplicity. 

The second criterion is often associated, although it is 

not necessary, with the elimination of the examples 

covered by the previous rules. 

Finally, the third criterion is associated with the 

completeness of the set of rules and must be taken 

into account when we can say that all the examples in 

the training set are sufficiently covered and no more 

rules are needed to represent them. 

 

5.2.1 Multi-Stage Genetic Fuzzy System Based on 

the IRL Approach 

Learning algorithms that use the IRL approach do not 

envisage any relationship between them in the 

process for obtaining rules. Therefore, the final set of 

rules usually needs an a posteriori process that will 

modify and/or fit the said set. The methodology that 

is presently applied includes different processes that 

are not necessarily applied simultaneously. This 

methodology, which we call multi-stage genetic fuzzy 
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systems and has been abbreviated as MSGFS, 

consists of three component parts: 

I A genetic generation stage for generating fuzzy 

rules using the IRL approach. 

II A post-processing stage working on the rule set 

obtained in the previous stage in order to either to 

refine rules or eliminate redundant rules. 

III A genetic tuning stage that tunes the membership 

functions of the fuzzy rules. 

We describe these shortly below. 

 

Genetic generation stage. In this stage the IRL 

approach is used for learning fuzzy rules capable of 

including the complete knowledge from the set of 

examples. A chromosome represents a fuzzy rule, the 

generation method selects the best rule according to 

different features included in the fitness function of 

the GA, features that include general properties of the 

KB and particular requirements to the fuzzy rule. 

This features lead to the definition of the covering 

degree between a rule and an example and the use of 

the concept of positive and negative examples. The 

IRL approach uses a covering method of the set of 

examples. This covering method assigns a relative 

covering value to every example, and removes the 

examples with an adequate covering value, according 

to a covering criterion. As we have indicated, this 

model may be used for learning RB as SLAVE and 

for learning KB as the genetic generation process 

proposed in [13]. 

Post-processing stage: selection and refinement. 

As we mentioned earlier, the IRL approach does not 

analyze any relationship between the rules that it is 

obtaining. That is why, once the rule base has been 

obtained, it may be improved either because there are 

rules that may be refined or redundant rules if high 

degrees of coverage are used. Two possible post-

processing methods have been used , a refinement 

algorithm  and a selection or simplification algorithm 

[12]. 

Genetic tuning stage. At this stage the genetic 

tuning process is applied over the KB for obtaining a 

more accurate one. We can consider two possibilities, 

depending on the fuzzy model’s nature: 

a) an approximate model based on a KB composed of 

a collection of fuzzy rules without a fixed 

relationship between the fuzzy rules and some 

primary fuzzy partitions giving meaning to them, or 

b) a descriptive model based on a linguistic 

description of the system with a fuzzy partition that 

assigns a membership function to every linguistic 

label. In both cases, each chromosome forming the 

genetic population will encode a complete DB, but in 

the first case each piece of chromosome codes the 

membership functions associated to one rule and in 

the second one each piece of chromosome codes the 

fuzzy partition of a variable. The main difference 

between both processes is the coding scheme. 

 

5.2.2 A Multi-stage Genetic Fuzzy Rule-Based 

System Structure 

In the following we present a guideline structure for 

multi-stage GFRBSs used in [13]: 

a) A Fuzzy Rule Generation Process. This process 

will determine the type of the final FRBS generated, 

so the generated fuzzy rules may present a 

descriptive, constrained approximate or 

unconstrained approximate semantics. In all cases, it 

will present two components: a fuzzy rule generating 

method composed of an inductive or evolutionary 

process which uses a niche criterion for obtaining the 

best possible cooperation among the fuzzy rules 

generated when working with the approximate 

approach, and an iterative covering method of the 

system behavior example set, which penalizes each 

rule generated by the fuzzy rule generating method 

by considering its covering over the examples in the 

training set and removes the ones yet covered from it. 

This process allows us to obtain a set of fuzzy rules 

with a concrete semantics covering the training set in 

an adequate form. 

b) A Genetic Multi-Simplification Process for 

selecting rules, based on a binary coded GA with a 

phenotypic sharing function and a measure of the 

FRBS accuracy in the problem being solved. It will 

save the overlearning that the previous component 

may cause due to the existence of redundant rules, 

with the aim of obtaining a simplified KB presenting 

the best possible cooperation among the fuzzy rules 

composing it. This process will obtain different 

possibilities for this simplified KB thanks to a 

genotypic niching scheme. 

c) An Evolutionary Tuning Process based on any 

kind of real coded EA and a measure of the FRBS 

performance. It will give the final KB as output by 

adjusting the membership functions for each fuzzy 

rule in each possible KB obtained from the genetic 

multi-simplification process. The type of tuning 

performed will depend on the nature of the FRBS 

being generated, i.e., when generating a descriptive 

FRBS, a global tuning of the fuzzy partition 

associated to each linguistic variable will be 

performed, but when working with any of the 

approximate approaches, the membership functions 

involved in each fuzzy rule will be adjusted. The 

most accurate KB obtained in this stage will 

constitute the final output of the whole learning 

process 
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6. Learning with Genetic fuzzy system: 

Michigan Approach 
 

6.1 INTRODUCTION 

While classifier systems of the Michigan type had 

been introduced by J. H. Holland in 1976, their 

fuzzification awaited discovery many years. The first 

fuzzy classifier system of the Michigan type was 

introduced by M. Valenzuela-Rendón ([19]) and is, 

more or less, a straightforward fuzzification of a 

Holland classifier system. An alternative approach 

has been developed by A. Bonarini ([2, 3]), who 

applies a different scheme of competetion between 

classifiers. These two approaches have in common 

that they operate only on the rules — the shape of the 

membership functions is fixed. A third method, 

which was introduced by P. Bonelli and A. Parodi, 

tries to optimize even the membership functions and 

the output weights in accordance to payoff from the 

environment. 

 

6.2 Fuzzifying Holland Classifier Systems 

 

6.2.1 The Production System 

We consider a fuzzy controller with real-valued input 

and output. The system has, unlike ordinary fuzzy 

controllers, three different types of variables — input, 

output, and internal variables. As we will see later, 

internal variables are for the purpose of storing 

information about the near past. They correspond to 

the internally tagged messages in Holland classifier 

systems. For the sake of generality and simplicity, all 

the universes of discourse, are transformed to the unit 

interval [0; 1]. For each variable the same number of 

membership functions n is assumed. These 

membership functions are fixed at the beginning. 

They are not changed throughout the learning 

process. M. Valenzuela-Rendón took bell-shaped 

function which divided the interval rather equally. A 

message is a binary string of length l + n, where n is 

the number of membership functions defined above 

and l is the length of the prefix (tag), which identifies 

the variable to which the message belongs. A good 

choice for l would be dlog2 Ke, where K is the total 

number of variables we want to consider. To each 

message an activity level, which represents a truth 

value, is assigned. 

Consider for instance the following message (l = 3, n 

= 5): |0{1z0}=2: 00010 ! 0:6 

Its meaning is ―Input no. 2 belongs to fuzzy set no. 4 

with a degree of 0:6‖. On the message list only so-

called minimal messages are used, i.e., messages with 

only one 1 in the part which identifies the numbers of 

the fuzzy sets. Classifiers again consist of a fixed 

number r of conditions and an action part. Note that, 

in this approach, no wildcards and no ―–‖ prefixes are 

used. Both condition and action part are also binary 

strings of length l +n, where the tag and the 

identifiers of the fuzzy sets are separated by a colon. 

Then the degree to which such a condition is matched 

is a truth value between 0 and 1. The degree of 

matching is computed as the maximal activity of 

messages on the list, which have the same tag and 

whose 1s are a subset of those of the condition. 

Figure 6.1 shows a simple example how this 

matching is done. The degree of satisfaction of the 

whole classifier is then computed as the minimum of 

matching degrees of the conditions. This is then also 

the activity level which is assigned to the output 

message (i.e., Mamdani inference). 

 

 
Fig6.1: Matching a fuzzy condition 

 

The whole rule base consists of a fixed number m of 

such classifiers. Similarly to Holland classifier 

systems, one execution step of the production system 

is done as follows: 

1. The detectors receive crisp input values from the 

environment and translate them into minimal 

messages which are then added to the message list. 

2. The degrees of matching are computed for all 

classifiers. 

3. The message list is erased. 

4. The output messages of some matched classifiers 

are placed on the message list. 

5. The output messages are translated into minimal 

messages. For instance, the message 010 : 00110 ! 

0:9 is split into the two messages 010 : 00010 ! 0:9 

and 010 : 00100 ! 0:9. 

6. The effectors discard the output messages 

(referring to output variables) from the list and 

translate them into instructions to the environment. 

From point 2 it can be seen easily that it is of 

advantage to use fuzzy sets with local support instead 

of bell-shaped ones, because, if bell-shaped fuzzy 

sets are used, every rule fires in each time step. 

Step 6 is done by a modified Mamdani inference: The 

sum (instead of the maximum or another t-conorm) 

of activity levels of messages, which refer to the 

same fuzzy set of a variable, is computed. The 

membership functions are then scaled with these 

sums. Finally, the center of gravity of the ―union‖ 

(i.e. maximum) of these functions, which belong to 

one variable, is computed (Sum-Prod inference). 
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6.2.2 Rule Discovery 

The adaptation of a genetic algorithm to the problem 

of manipulating classifiers in our system is again 

straightforward. We only have to take special care 

that tags in conditional parts must not refer to output 

variables and that tags in the action parts of the 

classifiers must not refer to input variables of the 

system. Analogously to our previous considerations, 

if we admit a certain number of internal variables, the 

system tends to build up internal chains, coupled 

sequences, autonomously. If we admit internal 

variables, a classifier system of this type not only 

learns stupid input-output actions, it also tries to 

discover causal interrelations. 

 

6.3 Bonarini’s ELF Method 

In [2], A. Bonarini presents his ELF (=evolutionary 

learning of fuzzy rules) method and applies it to the 

problem of guiding an autonomous robot. The key 

issue of ELF is to find a small rule base which only 

contains important rules. While he takes over many 

of M. Valenzuela-Rendón’s ideas, his way of 

modifying the rule base differs strongly from 

Valenzuela-Rendón’s straightforward fuzzification of 

Holland’s technique. Bonarini calls the modification 

scheme ―cover-detector algorithm‖. The number of 

rules can be varied in each time step depending on 

the number of rules which match the actual situation. 

This is done by two mutually exclusive operations: 

1. If the rules, which match the actual situation, are 

too many, the worst of them is deleted. 

2. If there are too few rules matching the current 

inputs, a new rule, whose antecedents cover the 

current state, with randomly chosen consequent 

value, is added to the rule base. 

The genetic operations are only applied to the 

consequent values of the rules. Since the antecedents 

are generated on demand in the different time steps, 

no taxation is necessary. 

Seemingly, such a simple modification scheme can 

only be applied to so-called one-stage problems, 

where the effect of each rule can be observed in the 

next time step. For applications where this is not 

valid, e.g., backing up a truck, Bonarini introduced a 

modification of his ELF algorithm — the concept of 

an episode, which is a given number of subsequent 

control actions, after which they reached state is 

evaluated. 

 

6.4 Online Modification of the Whole Knowledge 

Base 

While the last two methods only manipulate rules and 

work with fixed membership functions, there is at 

least one variant of fuzzy classifier systems were also 

the membership functions are involved in the 

learning process. This variant was introduced by A. 

Parodi and P. Bonelli in [65]. The main idea is that an 

approximate knowledge base is used instead of a 

descriptive one as in the two previous examples. So, 

a fuzzy rule is not represented as a linguistic 

expression which refers only to labels of fuzzy sets, 

but a fuzzy relation on X_Y , where X is the input 

and Y is the output domain. More specifically, each 

rule is represented as a pair consisting of a fuzzy 

subset of X and a fuzzy subset of Y .Since, in many 

applications, X and Y are themselves cross products, 

i.e., X = X1__ _ __Xn and Y = Y1 _ _ _ _ _ Ym, 

rules in a approximative knowledge base can be 

written as Ai1 _ _ _ _ _ Ain _ Bi1 _ _ _ _ _ Bim . 

Where i is the index of the rule. If one restricts to 

certain class of fuzzy subsets, such as triangular or 

bell-shaped membership functions, it is possible to 

encode a rule as (ai1; : : : ; ain; bi1; : : : ; bim) 

where aij and bij are parameters uniquely identifying 

a fuzzy subset of Xj or Yj , respectively. Moreover, 

in this approach, each rule is additionally equipped 

with a strength factor, which is taken as a scaling 

factor of the output set. This strength factor is also 

used as fitness measure by the genetic algorithm 

which modifies the knowledge base and modified 

according to payoff from the environment. 

 

7. Conclusion 
One of the most important advantages of fuzzy 

systems is that the functions are parameterized in a 

way which is interpretable for humans. More 

specifically, it is possible to translate human 

knowledge into fuzzy rules and fuzzy sets, but, on the 

contrary, not every system, which is formally a fuzzy 

system, is really interpretable. In fact, the probability, 

that difficultly interpretable configurations are 

obtained, is rather high when representations with 

lots of degrees of freedom are tried to be optimized. 

An alternative, which can help to overcome this 

problem, is to encode whole fuzzy partitions as 

shown in the fifth lecture. Obviously, this approach 

allows less degree of freedom, which can also speed 

up convergence. 

There have been a lot of publications concerning with 

genetic optimization of fuzzy systems (see [6] for 

recent bibliographies). Each of these approaches — 

many of them are rather similar—has only been 

applied to a few benchmark problems. So far, there 

are no proofs (neither theoretical nor empirical) 

which methods are suitable for which problems. 
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