
Mr. Sandeep Sharawat / International Journal of Engineering Research and Applications (IJERA)      

ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2,Mar-Apr 2012, pp.750-755 

750 | P a g e  

 

 

Software Maintainability Prediction Using Neural Networks 

 

 Mr. Sandeep Sharawat 
(University School of Information Technology 

GGSIPU 

Sector 16-C, Dwarka, Delhi) 

 
Abstract 
To increase software maintainability, the main focus on 

MI (Maintainability Index) which is a composite metric 

that incorporates a number of traditional source code 

metrics into a single number that indicates relative 

maintainability. Li-Henry data is used for the prediction 

of MI to train neural networks. There are different 

training algorithms (trainlm, traingdm, trainscg, trainbfg, 

traincgp, trainoss, trainr, trainrp), even custom training 

algorithms may be used.  After training the neural 

network,  a set of input values are provided & change or 

say, MI can be determined as output of the trained neural 

network. Input values may be provided with different 

changes in input attributes to see, “how MI is affected by 

different attributes & how should we need to design/code 

an application to get better maintainability. 

 

Keywords – Li-Henry data, Metrics, MI, Neural 

networks, software maintenance. 

 

1. Introduction 
Software Maintenance in software engineering is the 

modification of a software product after delivery to 

correct faults, to improve performance or other 

attributes[2,3,5]. 

 

The key software maintenance issues are both managerial 

and technical. Key management issues are: alignment 

with customer priorities, staffing, which organization does 

maintenance, estimating costs. Key technical issues are: 

limited understanding, impact analysis, testing, and 

maintainability measurement. 

 

Maintainability:- The ease with which a software system 

or component can be modified or correct faults, improve 

performance or other factors, or adapt to a changed 

environment [3,5]. 

 

Consistent with these definitions, the maintenance process 

can be divided into four areas of focus : 

a) Corrective maintenance: Maintenance  performed  to 

correct faults in hardware or software. 

 

b) Adaptive maintenance: Software  maintenance 

performed   to make a computer program usable in a 

changed environment. 

c) Perfective maintenance: Software maintenance   

performed   to   improve the performance, 

maintainability, or other attributes of a computer 

program. 

d) Preventive maintenance: Concerns activities aiming 

on increasing software maintainability and prevent 

problems in the future. 

 

1.1 RELATED WORK 

There are different techniques for prediction from existing 

data in terms of independent variables and dependent 

variable. In object oriented system, for prediction of 

maintainability different metrics are used in different 

researches. Metrics described in research of Shyam R. 

Chidamber and Chris F. Kemerer are weighted methods 

per class (WMC), depth of inheritance tree (DIT), number 

of children (NOC), coupling between object class (CBO), 

response for  a class (RFC), lack of cohesion in methods 

(LCOM)[8]. Whereas metrics considered in the research 

work of  Dr. Arvinder Kaur, Kamaldeep Kaur and Dr. 

Ruchika Malhotra are LCOM (lack of cohesion), DIT 

(depth of inheritance tree), WMC (weighted methods per 

class), NOC (number of children), RFC (response of 

class), DAC (data abstraction coupling), MPC (message 

passing coupling), NOM (number of methods per 

class)[1]. We considered the metrics used by Li-Henry in 

their work and feedforward neural networks are used for 

predictions of MI using the data collected on UIMS (User 

Interface Management System) and metrics are DIT 

(Depth in the Inheritance Tree), NOC (Number of 

Children), MPC (Message Passing Coupling), RFC 

(Response For Class), LCOM (Lack of Cohesion of 

Methods), DAC (Data Abstraction Coupling), WMC 

(Weighted Method Complexity), NOM (Number of 

Methods), Size1(Number of semicolons per class), Size2 

(Number of methods plus number of attributes)[6] as the 

independent variables & one metric named as Change 

(Number of lines changed per class in its maintenance 

history)[6] as dependent variable on the independent 

variables. This change attribute that indicates  relative 

maintainability which is referred to be MI.  In the 

following subsections we will describe MI, Predictions 
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and Neural Networks and we will use the Neural 

Networks for prediction of MI using the data collected for 

UIMS application [6] by W. Li & S. Henry for the above 

mentioned metrics for training of neural network to get 

properly weighted & biased trained neural network. In the 

same way we will design different neural network using 

different training functions, then we select five test data 

with target values and record the errors as difference 

between the output generated and target values. After 

comparing the results we get the proper trained network 

using which we can analyze MI to see the effects of 

change in any metric. 

  

1.2 MAINTAINABILITY INDEX 

To increase software maintainability, we mainly focus on 

MI (Maintainability Index) which is a composite metric 

that incorporates a number of traditional source code 

metrics into a single number that indicates relative 

maintainability[3,4].  

Software practitioners have been collecting metrics from 

source code to understand the effects of changes on 

maintainability of software systems. Maintainability 

Index (MI) is considered to be a composite metric for the 

said purpose as a single number that indicates relative 

maintainability. As originally proposed by Oman and 

Hagemeister, the MI is comprised of weighted Halstead 

metrics (effort or volume), McCabe’s Cyclomatic 

Complexity, lines of code (LOC), and number of 

comments[3]. Two equations were presented: one that 

considered comments and one that did not. The original 

polynomial equations defining MI are as follows: 

 

3-Metric:  

MI=171-3.42ln(aveE)- 0.23aveV(g’) - 16.2ln(aveLOC) 

……(1) 

4-Metric: 

 MI=171-3.42ln(aveE)- 0.23aveV(g’)-16.2ln(aveLOC) 

+0.99aveCM 

……(2) 

 

where aveE is the average Halstead Effort per module, 

aveV(g’) is the average extended cyclomatic complexity 

per module, aveLOC is the average lines of code per 

module, and aveCM is the average number of lines of 

comments per module. 

 

The rationale behind this selection of metrics was to 

construct a rough order, composite metric that 

incorporated quantifiable measurements for the following 

[3]: 

• Density of operators and operands (how many variables 

and how they are used). 

• Logic complexity (how many execution paths are in the 

code). 

• Size (how much code is there). 

• Human insight (comments in the code). 

 

Other variants of the MI have been evolved using slightly 

different metrics, metric combinations, and weights. Each 

has the general flavor of the basic MI equation and 

underlying rationale. 

 

Reasonable success has been achieved in using MI to 

quantify and improve software maintainability both 

during development and maintenance activities [3]. 

 

1.3 PREDICTIONS 

Prediction, commonly known as estimation is an 

important part of project planning. When estimations are 

made for projects, these are called effort estimates and 

when made for the process is called effort  estimation or 

software cost estimation when estimates are made to a 

maintenances process, the mean of obtaining such 

estimates is called maintenance cost prediction or 

maintenance project effort estimation[4]. 

We used Neural Networks in Matlab software for 

predictions of maintainability index and predict MI by 

simulating the neural network. 

1.4 NEED FOR PREDICTIONS 

Software maintenance phase of software development life 

cycle is an important part or role for providing the 

software quality attributes such as accuracy and clarity of 

documentation, modularity, readability, simplicity. It has 

been observed from many researches in past that software 

maintainability cost is more than 40 percent of total cost 

of developing it. The software maintenance of a software 

system can significantly impact software costs. This 

means that it is important to be able to forecast a software 

system’s maintainability so to effectively manage 

costs[4].  

 

Software evolution is not separable from software 

maintainability which comes into consideration after 

software is delivered to the client and is in operation 

mode and changes need to be implemented. Due to the 

unpredictability of changes needed with time that may be 

because of varieties of faults, the scope and cost of 

software maintainability are indefinite after a software 

product being delivered.  

 

Prediction of MI is considered in the industries for 

developing software application keeping in the view of 

software maintenance in such a way that the developed 

application will be more maintainable. 

Also risk factor of cost may be analyzed as if the 

maintenance phase is more difficult  in the SDLC, then it 

may indicate that it ( i.e. software under prediction) is 
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more difficult to maintain which indirectly means cost of 

maintaining the software is more. Cost factor may be 

analyzed in Risk Analysis. After finding that the overall 

cost of software under development due to high 

maintainability cost, in the analysis process, it is to be 

understood that the current design is not much reliable to 

develop further for current environment. So the design 

team may be asked to design more reliable design under 

current circumstances. In this ways, Industries will be 

benefited by the Prediction of MI in the early phases of 

development.   

 

2. DATA Source 

Different researchers attempted to link software matrices 

to software maintainability in procedural paradigm. 

Rombach indicates that software maintainability can be 

predicted by using software matrices. Different object 

oriented matrices are considered by different researchers 

in past, we considered, Wei Li and Henry, which also 

show that software maintainability can be predicted using 

software matrices. All these preliminary results about the 

relationship of software matrices & software 

maintainability were obtained from procedural paradigm. 

These same metrics have yet to be verified in object 

oriented paradigm[6]. 

 

Study of Li-Henry attempts to bring research in software 

matrices and the research of object oriented programming 

together. Specifically, investigates proposed object 

oriented software matrices and proposes some additional 

object oriented software matrices & validates the matrices 

using the maintenance data collected from two 

commercial software system[6]. 

 

The object oriented metrics used by Li-Henry in their 

research paper are abbreviated as follows[6]: 

 

DIT = Depth in the Inheritance Tree 

The DIT metric measures the position of a class in the 

inheritance hierarchy.  One may hypothesize that the 

larger the DIT metric, the harder it is to maintain the 

class.  The calculation of the DIT metric is the level 

number for a class in the inheritance hierarchy.  The root 

class DIT is zero, DIT ranges from 0 to N; where N is a 

positive integer. 

 

NOC = Number of Children 

The NOC metric measures the number of direct children a 

class has. One may intuit that the larger the NOC metric, 

the harder it is to maintain the class.  The calculation of 

NOC is number of direct sub-classes; ranging from 0 to 

N; where N is a positive integer. 

 

MPC = Message Passing Coupling 

MPC is used to measure the complexity of message 

passing among classes in the research.  MPC is number of 

send-statements defined in a class. The number of 

messages sent out from a class may indicate how 

dependent the implementation of the local methods is 

upon the methods in other classes.  

 

RFC = Response For Class 

The RFC metric measures the cardinality of the response 

set of a class.  One may intuit that the larger the RFC 

metric, the harder it is to maintain the class since calling a 

large number of methods in response to a message makes 

tracing an error difficult.  The calculation of RFC is  

number of local methods and number of methods called 

by local methods; ranging from 0 to N; where N is a 

positive integer. 

 

LCOM = Lack of Cohesion of Methods 

The LCOM metric measures the lack of cohesion of a 

class. One may intuit that the larger the metric, the harder 

it is to maintain the class. The calculation of LCOM is 

number of disjoint sets of local methods; no two sets 

intersect; any two methods in the same set share at least 

one local instance variable; ranging from 0 to N; where N 

is a positive integer.  

 

DAC  = Data Abstraction Coupling 

A class can be viewed as an implementation of an 

ADT(Abstract Data Type). The metric which measures 

the coupling complexity caused by ADTs is DAC (Data 

Abstraction Coupling) and is the number of ADTs defined 

in a class. 

 

WMC = Weighted Method Complexity 

WMC metric measures the static complexity of all the 

methods. The more control flows a class’ methods have, 

the harder it is to understand them, thus the harder it is to 

maintain them.  The WMC is calculated as the sum of 

McCabe’s cyclomatic complexity of each local method; 

ranging from 0 to N; where N is a positive integer. 

 

 

NOM = Number of Methods 

NOM in a class, since the local methods in a class 

constitute the interface increment of the class, NOM 

serves the best as an interface metric.  NOM is the 

number of local methods. The more methods a class has, 

the more complex the class’ interface has incremented. 

 

SIZE1 = number of semicolons per class 

It is the traditional Lines of Code metric which is 

calculated by counting the number of semicolons in a 

class.  The LOC metric is hereby referred to as SIZE1. 

 

SIZE2 = number of methods plus number of        
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attributes 

The second size metric used is the number of properties 

(including the attributes and methods) defined in a class.  

This size metric is referred to as SIZE2. 

 

The maintenance effort used in the study is (collected for 

each class maintained): 

 

Change = number of lines changed per class in its 

maintenance history 

 

The maintenance effort “change” is measured as “the 

number of lines changed per class. The “change” is used 

as a dependent variable in this study. A line change could 

be an addition or a deletion. A change of the content of a 

line is counted as a deletion and an addition[6]. 

 

3. Neural Networks 
Neural Network Toolbox in MATLAB software provides 

tools for designing, implementing, visualizing, and 

simulating neural networks. Neural networks are used for 

applications where formal analysis would be difficult or 

 

 

Fig: a) Working State Diagram of Neural Networks 

Ref: [Robyn Ball and Philippe Tissot, “Demonstration of 

Artificial Neural Network in Matlab”, Division of 

Nearhsore Research, Texas A&M University – Corpus 

Christi] 

 

impossible, such as pattern recognition and nonlinear 

system identification and control. The toolbox supports 

feedforward networks, radial basis networks, dynamic 

networks, self-organizing maps, and other proven network 

paradigms. We are using feedforward networks out of 

these, for our work [10]. 

 

3.1 Machine Training and Learning Functions 

Training and learning functions are mathematical 

procedures used to automatically adjust the network's 

weights and biases. The training function dictates a global 

algorithm that affects all the weights and biases of a given 

network. The learning function can be applied to 

individual weights and biases within a network[10]. 

 

 
 

Fig: b) Neural Network Training 
[Snapshot: Generated during the Training of Neural 

Network using UIMS application data for training.] 

 

 

Neural Network Toolbox supports a variety of training 

algorithms, including several gradient descent methods, 

conjugate gradient methods, the Levenberg-Marquardt 

algorithm (LM), and the resilient backpropagation 

algorithm. The toolbox’s modular framework lets us 

quickly develop custom training algorithms that can be 

integrated with built-in algorithms. While training our 

neural network, we can use error weights to define the 

relative importance of desired outputs, which can be 

prioritized in terms of sample, timestep (for time-series 

problems), output element, or any combination of these. 

One can access training algorithms from the command 

line or via a graphical tool that shows a diagram of the 

network being trained and provides network performance 

plots and status information to help us monitor the 

training process.  
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Fig: c) Training State Graph 

[Snapshot: Representing the Training State Graph of the 

Neural Network.] 

 

A suite of learning functions, including gradient descent, 

Hebbian learning, LVQ, Widrow-Hoff, and Kohonen, is  

available in the system and for feedforward networks 

gradient descent learning functions namely learngd, 

learngdm.  

 

 
 

Fig: d) Performance Graph 
[Snapshot: Generated to represent the Performance 

Graph for the training of Neural Network.] 

Whereas a subset of training functions are used, we used 

training function namely trainlm, traingdm, trainscg, 

trainbfg, traincgp, trainoss, trainr & trainrp and other 

training algorithms available are traincgb, trainbr, 

traincgf, traingd, traingda, traingdx[9,10]. 

 
 

Fig: d) Regression Graph 

[Snapshot: Generated to represent the Regression Graphs 

for Neural Network] 

 

For our prediction work, we used neural networks in 

Matlab software system. Neural networks are composed 

of simple elements operating in parallel. Commonly 

neural networks are adjusted, or trained, so that a 

particular input leads to a specific target output. The 

network is adjusted, based on a comparison of the output 

and the target, until the network output matches the target. 

Typically many such input/target pairs are needed to train 

a network[7,9]. 

3.2 SIMULATION OF NETWORKS 

Now we create different neural networks and train them 

using different training functions using data collect for 

UIMS application by W. Li and S. Henry[6]  to get 

properly weighted & biased neural networks. Now using 

these trained network we supply five test data set with 

known target value and record the difference between the 

actual output target value as error for each test data set for 

each neural network which are trained with different 

training algorithms in Table:1. 
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Training 

Algorithms 
Test1 Test2 Test3 Test4 Test5 

Trainlm -2.13 35.56 10.31 42.59 4.92 

Traingdm 203 48 91 -36 37 

Trainscg 89.06 3.47 2.02 185.92 
-

10.65 

Trainbfg 203 48 91 251 37 

Traincgp 64.07 39.07 57.71 134.48 23.89 

Trainoss 
-

83.98 
48 91 6.95 37 

Trainr -84 -239 
-

195.99 
-36 -250 

Trainrp 
-

29.10 
41.68 75.59 -20.01 30.95 

TABLE 1: Resulting error for different neural network. 

 

4. CONCLUSION  
We observed from Table 1 that Trainlm training function 

is more suitable than other training functions used. So by 

training our neural network using Trainlm function, we 

simulate neural network for the prediction of MI. Now 

using this trained neural network we can simulate the 

network for prediction by changing any metric value we 

can analyze the effect of change in that metric on MI. or 

MI value can be predicted by increasing or decreasing 

different metric values like size, depth of inheritance etc. 

This work can be used to predict MI in the industries for 

developing software application keeping in the view of 

software maintenance in such a way that the developed 

application will be more maintainable and also can be 

used in risk or cost analysis as mentioned in Need for 

Prediction . 

In our work, we used neural networks (based on neural 

networks algorithms), further we can design our own 

training algorithm for better results focusing on MI, those 

may be based  on Fuzzy Logic algorithms, Artificial 

Intelligence based algorithms or Support vector based 

algorithms etc. While designing our own algorithms 

focusing on MI will result in more accuracy in the 

prediction of Maintainability Index to show how 

maintainable software system will be, which may have 

major impact in industries as companies may be able to 

predict MI, so that risk analysis or cost analysis can be 

considered earlier in respect of software maintenance, 

which will help us to reduce overall cost of software 

systems. 
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