
Mr. Sandeep Sharawat / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.750-755

750 | P a g e

Software Maintainability Prediction Using Neural Networks

 Mr. Sandeep Sharawat
(University School of Information Technology

GGSIPU

Sector 16-C, Dwarka, Delhi)

Abstract
To increase software maintainability, the main focus on

MI (Maintainability Index) which is a composite metric

that incorporates a number of traditional source code

metrics into a single number that indicates relative

maintainability. Li-Henry data is used for the prediction

of MI to train neural networks. There are different

training algorithms (trainlm, traingdm, trainscg, trainbfg,

traincgp, trainoss, trainr, trainrp), even custom training

algorithms may be used. After training the neural

network, a set of input values are provided & change or

say, MI can be determined as output of the trained neural

network. Input values may be provided with different

changes in input attributes to see, “how MI is affected by

different attributes & how should we need to design/code

an application to get better maintainability.

Keywords – Li-Henry data, Metrics, MI, Neural

networks, software maintenance.

1. Introduction
Software Maintenance in software engineering is the

modification of a software product after delivery to

correct faults, to improve performance or other

attributes[2,3,5].

The key software maintenance issues are both managerial

and technical. Key management issues are: alignment

with customer priorities, staffing, which organization does

maintenance, estimating costs. Key technical issues are:

limited understanding, impact analysis, testing, and

maintainability measurement.

Maintainability:- The ease with which a software system

or component can be modified or correct faults, improve

performance or other factors, or adapt to a changed

environment [3,5].

Consistent with these definitions, the maintenance process

can be divided into four areas of focus :

a) Corrective maintenance: Maintenance performed to

correct faults in hardware or software.

b) Adaptive maintenance: Software maintenance

performed to make a computer program usable in a

changed environment.

c) Perfective maintenance: Software maintenance

performed to improve the performance,

maintainability, or other attributes of a computer

program.

d) Preventive maintenance: Concerns activities aiming

on increasing software maintainability and prevent

problems in the future.

1.1 RELATED WORK

There are different techniques for prediction from existing

data in terms of independent variables and dependent

variable. In object oriented system, for prediction of

maintainability different metrics are used in different

researches. Metrics described in research of Shyam R.

Chidamber and Chris F. Kemerer are weighted methods

per class (WMC), depth of inheritance tree (DIT), number

of children (NOC), coupling between object class (CBO),

response for a class (RFC), lack of cohesion in methods

(LCOM)[8]. Whereas metrics considered in the research

work of Dr. Arvinder Kaur, Kamaldeep Kaur and Dr.

Ruchika Malhotra are LCOM (lack of cohesion), DIT

(depth of inheritance tree), WMC (weighted methods per

class), NOC (number of children), RFC (response of

class), DAC (data abstraction coupling), MPC (message

passing coupling), NOM (number of methods per

class)[1]. We considered the metrics used by Li-Henry in

their work and feedforward neural networks are used for

predictions of MI using the data collected on UIMS (User

Interface Management System) and metrics are DIT

(Depth in the Inheritance Tree), NOC (Number of

Children), MPC (Message Passing Coupling), RFC

(Response For Class), LCOM (Lack of Cohesion of

Methods), DAC (Data Abstraction Coupling), WMC

(Weighted Method Complexity), NOM (Number of

Methods), Size1(Number of semicolons per class), Size2

(Number of methods plus number of attributes)[6] as the

independent variables & one metric named as Change

(Number of lines changed per class in its maintenance

history)[6] as dependent variable on the independent

variables. This change attribute that indicates relative

maintainability which is referred to be MI. In the

following subsections we will describe MI, Predictions

Mr. Sandeep Sharawat / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.750-755

751 | P a g e

and Neural Networks and we will use the Neural

Networks for prediction of MI using the data collected for

UIMS application [6] by W. Li & S. Henry for the above

mentioned metrics for training of neural network to get

properly weighted & biased trained neural network. In the

same way we will design different neural network using

different training functions, then we select five test data

with target values and record the errors as difference

between the output generated and target values. After

comparing the results we get the proper trained network

using which we can analyze MI to see the effects of

change in any metric.

1.2 MAINTAINABILITY INDEX

To increase software maintainability, we mainly focus on

MI (Maintainability Index) which is a composite metric

that incorporates a number of traditional source code

metrics into a single number that indicates relative

maintainability[3,4].

Software practitioners have been collecting metrics from

source code to understand the effects of changes on

maintainability of software systems. Maintainability

Index (MI) is considered to be a composite metric for the

said purpose as a single number that indicates relative

maintainability. As originally proposed by Oman and

Hagemeister, the MI is comprised of weighted Halstead

metrics (effort or volume), McCabe’s Cyclomatic

Complexity, lines of code (LOC), and number of

comments[3]. Two equations were presented: one that

considered comments and one that did not. The original

polynomial equations defining MI are as follows:

3-Metric:

MI=171-3.42ln(aveE)- 0.23aveV(g’) - 16.2ln(aveLOC)

……(1)

4-Metric:

 MI=171-3.42ln(aveE)- 0.23aveV(g’)-16.2ln(aveLOC)

+0.99aveCM

……(2)

where aveE is the average Halstead Effort per module,

aveV(g’) is the average extended cyclomatic complexity

per module, aveLOC is the average lines of code per

module, and aveCM is the average number of lines of

comments per module.

The rationale behind this selection of metrics was to

construct a rough order, composite metric that

incorporated quantifiable measurements for the following

[3]:

• Density of operators and operands (how many variables

and how they are used).

• Logic complexity (how many execution paths are in the

code).

• Size (how much code is there).

• Human insight (comments in the code).

Other variants of the MI have been evolved using slightly

different metrics, metric combinations, and weights. Each

has the general flavor of the basic MI equation and

underlying rationale.

Reasonable success has been achieved in using MI to

quantify and improve software maintainability both

during development and maintenance activities [3].

1.3 PREDICTIONS

Prediction, commonly known as estimation is an

important part of project planning. When estimations are

made for projects, these are called effort estimates and

when made for the process is called effort estimation or

software cost estimation when estimates are made to a

maintenances process, the mean of obtaining such

estimates is called maintenance cost prediction or

maintenance project effort estimation[4].

We used Neural Networks in Matlab software for

predictions of maintainability index and predict MI by

simulating the neural network.

1.4 NEED FOR PREDICTIONS

Software maintenance phase of software development life

cycle is an important part or role for providing the

software quality attributes such as accuracy and clarity of

documentation, modularity, readability, simplicity. It has

been observed from many researches in past that software

maintainability cost is more than 40 percent of total cost

of developing it. The software maintenance of a software

system can significantly impact software costs. This

means that it is important to be able to forecast a software

system’s maintainability so to effectively manage

costs[4].

Software evolution is not separable from software

maintainability which comes into consideration after

software is delivered to the client and is in operation

mode and changes need to be implemented. Due to the

unpredictability of changes needed with time that may be

because of varieties of faults, the scope and cost of

software maintainability are indefinite after a software

product being delivered.

Prediction of MI is considered in the industries for

developing software application keeping in the view of

software maintenance in such a way that the developed

application will be more maintainable.

Also risk factor of cost may be analyzed as if the

maintenance phase is more difficult in the SDLC, then it

may indicate that it (i.e. software under prediction) is

Mr. Sandeep Sharawat / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.750-755

752 | P a g e

more difficult to maintain which indirectly means cost of

maintaining the software is more. Cost factor may be

analyzed in Risk Analysis. After finding that the overall

cost of software under development due to high

maintainability cost, in the analysis process, it is to be

understood that the current design is not much reliable to

develop further for current environment. So the design

team may be asked to design more reliable design under

current circumstances. In this ways, Industries will be

benefited by the Prediction of MI in the early phases of

development.

2. DATA Source

Different researchers attempted to link software matrices

to software maintainability in procedural paradigm.

Rombach indicates that software maintainability can be

predicted by using software matrices. Different object

oriented matrices are considered by different researchers

in past, we considered, Wei Li and Henry, which also

show that software maintainability can be predicted using

software matrices. All these preliminary results about the

relationship of software matrices & software

maintainability were obtained from procedural paradigm.

These same metrics have yet to be verified in object

oriented paradigm[6].

Study of Li-Henry attempts to bring research in software

matrices and the research of object oriented programming

together. Specifically, investigates proposed object

oriented software matrices and proposes some additional

object oriented software matrices & validates the matrices

using the maintenance data collected from two

commercial software system[6].

The object oriented metrics used by Li-Henry in their

research paper are abbreviated as follows[6]:

DIT = Depth in the Inheritance Tree

The DIT metric measures the position of a class in the

inheritance hierarchy. One may hypothesize that the

larger the DIT metric, the harder it is to maintain the

class. The calculation of the DIT metric is the level

number for a class in the inheritance hierarchy. The root

class DIT is zero, DIT ranges from 0 to N; where N is a

positive integer.

NOC = Number of Children

The NOC metric measures the number of direct children a

class has. One may intuit that the larger the NOC metric,

the harder it is to maintain the class. The calculation of

NOC is number of direct sub-classes; ranging from 0 to

N; where N is a positive integer.

MPC = Message Passing Coupling

MPC is used to measure the complexity of message

passing among classes in the research. MPC is number of

send-statements defined in a class. The number of

messages sent out from a class may indicate how

dependent the implementation of the local methods is

upon the methods in other classes.

RFC = Response For Class

The RFC metric measures the cardinality of the response

set of a class. One may intuit that the larger the RFC

metric, the harder it is to maintain the class since calling a

large number of methods in response to a message makes

tracing an error difficult. The calculation of RFC is

number of local methods and number of methods called

by local methods; ranging from 0 to N; where N is a

positive integer.

LCOM = Lack of Cohesion of Methods

The LCOM metric measures the lack of cohesion of a

class. One may intuit that the larger the metric, the harder

it is to maintain the class. The calculation of LCOM is

number of disjoint sets of local methods; no two sets

intersect; any two methods in the same set share at least

one local instance variable; ranging from 0 to N; where N

is a positive integer.

DAC = Data Abstraction Coupling

A class can be viewed as an implementation of an

ADT(Abstract Data Type). The metric which measures

the coupling complexity caused by ADTs is DAC (Data

Abstraction Coupling) and is the number of ADTs defined

in a class.

WMC = Weighted Method Complexity

WMC metric measures the static complexity of all the

methods. The more control flows a class’ methods have,

the harder it is to understand them, thus the harder it is to

maintain them. The WMC is calculated as the sum of

McCabe’s cyclomatic complexity of each local method;

ranging from 0 to N; where N is a positive integer.

NOM = Number of Methods

NOM in a class, since the local methods in a class

constitute the interface increment of the class, NOM

serves the best as an interface metric. NOM is the

number of local methods. The more methods a class has,

the more complex the class’ interface has incremented.

SIZE1 = number of semicolons per class

It is the traditional Lines of Code metric which is

calculated by counting the number of semicolons in a

class. The LOC metric is hereby referred to as SIZE1.

SIZE2 = number of methods plus number of

Mr. Sandeep Sharawat / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.750-755

753 | P a g e

attributes

The second size metric used is the number of properties

(including the attributes and methods) defined in a class.

This size metric is referred to as SIZE2.

The maintenance effort used in the study is (collected for

each class maintained):

Change = number of lines changed per class in its

maintenance history

The maintenance effort “change” is measured as “the

number of lines changed per class. The “change” is used

as a dependent variable in this study. A line change could

be an addition or a deletion. A change of the content of a

line is counted as a deletion and an addition[6].

3. Neural Networks
Neural Network Toolbox in MATLAB software provides

tools for designing, implementing, visualizing, and

simulating neural networks. Neural networks are used for

applications where formal analysis would be difficult or

Fig: a) Working State Diagram of Neural Networks

Ref: [Robyn Ball and Philippe Tissot, “Demonstration of

Artificial Neural Network in Matlab”, Division of

Nearhsore Research, Texas A&M University – Corpus

Christi]

impossible, such as pattern recognition and nonlinear

system identification and control. The toolbox supports

feedforward networks, radial basis networks, dynamic

networks, self-organizing maps, and other proven network

paradigms. We are using feedforward networks out of

these, for our work [10].

3.1 Machine Training and Learning Functions

Training and learning functions are mathematical

procedures used to automatically adjust the network's

weights and biases. The training function dictates a global

algorithm that affects all the weights and biases of a given

network. The learning function can be applied to

individual weights and biases within a network[10].

Fig: b) Neural Network Training
[Snapshot: Generated during the Training of Neural

Network using UIMS application data for training.]

Neural Network Toolbox supports a variety of training

algorithms, including several gradient descent methods,

conjugate gradient methods, the Levenberg-Marquardt

algorithm (LM), and the resilient backpropagation

algorithm. The toolbox’s modular framework lets us

quickly develop custom training algorithms that can be

integrated with built-in algorithms. While training our

neural network, we can use error weights to define the

relative importance of desired outputs, which can be

prioritized in terms of sample, timestep (for time-series

problems), output element, or any combination of these.

One can access training algorithms from the command

line or via a graphical tool that shows a diagram of the

network being trained and provides network performance

plots and status information to help us monitor the

training process.

Mr. Sandeep Sharawat / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.750-755

754 | P a g e

Fig: c) Training State Graph

[Snapshot: Representing the Training State Graph of the

Neural Network.]

A suite of learning functions, including gradient descent,

Hebbian learning, LVQ, Widrow-Hoff, and Kohonen, is

available in the system and for feedforward networks

gradient descent learning functions namely learngd,

learngdm.

Fig: d) Performance Graph
[Snapshot: Generated to represent the Performance

Graph for the training of Neural Network.]

Whereas a subset of training functions are used, we used

training function namely trainlm, traingdm, trainscg,

trainbfg, traincgp, trainoss, trainr & trainrp and other

training algorithms available are traincgb, trainbr,

traincgf, traingd, traingda, traingdx[9,10].

Fig: d) Regression Graph

[Snapshot: Generated to represent the Regression Graphs

for Neural Network]

For our prediction work, we used neural networks in

Matlab software system. Neural networks are composed

of simple elements operating in parallel. Commonly

neural networks are adjusted, or trained, so that a

particular input leads to a specific target output. The

network is adjusted, based on a comparison of the output

and the target, until the network output matches the target.

Typically many such input/target pairs are needed to train

a network[7,9].

3.2 SIMULATION OF NETWORKS

Now we create different neural networks and train them

using different training functions using data collect for

UIMS application by W. Li and S. Henry[6] to get

properly weighted & biased neural networks. Now using

these trained network we supply five test data set with

known target value and record the difference between the

actual output target value as error for each test data set for

each neural network which are trained with different

training algorithms in Table:1.

Mr. Sandeep Sharawat / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.750-755

755 | P a g e

Training

Algorithms
Test1 Test2 Test3 Test4 Test5

Trainlm -2.13 35.56 10.31 42.59 4.92

Traingdm 203 48 91 -36 37

Trainscg 89.06 3.47 2.02 185.92
-

10.65

Trainbfg 203 48 91 251 37

Traincgp 64.07 39.07 57.71 134.48 23.89

Trainoss
-

83.98
48 91 6.95 37

Trainr -84 -239
-

195.99
-36 -250

Trainrp
-

29.10
41.68 75.59 -20.01 30.95

TABLE 1: Resulting error for different neural network.

4. CONCLUSION
We observed from Table 1 that Trainlm training function

is more suitable than other training functions used. So by

training our neural network using Trainlm function, we

simulate neural network for the prediction of MI. Now

using this trained neural network we can simulate the

network for prediction by changing any metric value we

can analyze the effect of change in that metric on MI. or

MI value can be predicted by increasing or decreasing

different metric values like size, depth of inheritance etc.

This work can be used to predict MI in the industries for

developing software application keeping in the view of

software maintenance in such a way that the developed

application will be more maintainable and also can be

used in risk or cost analysis as mentioned in Need for

Prediction .

In our work, we used neural networks (based on neural

networks algorithms), further we can design our own

training algorithm for better results focusing on MI, those

may be based on Fuzzy Logic algorithms, Artificial

Intelligence based algorithms or Support vector based

algorithms etc. While designing our own algorithms

focusing on MI will result in more accuracy in the

prediction of Maintainability Index to show how

maintainable software system will be, which may have

major impact in industries as companies may be able to

predict MI, so that risk analysis or cost analysis can be

considered earlier in respect of software maintenance,

which will help us to reduce overall cost of software

systems.

References

[1] Dr. Arvinder Kaur, Kamaldeep Kaur, Dr. Ruchika

Malhotra, “Soft computing approaches for Prediction

of software Maintenance Effort”, 2010 International

Journal of computer application (0975-8887).

[2] Don Coleman and Dan Ash, Bruce Lowther, Paul

Oman “ Using Metrices to evaluate software system

Maintainability”, Hewlett-Packard, Micron

Semiconductor, University of Idaho, IEEE computer,

vol.27, no.8, pp.44-49, Aug. 1994.

[3] Kurt D. Welker “The Software Maintainability Index

Revisited”, Idaho National Engineering and

Environmental Laboratory, Crosstalk, Aug. 2001.

[4] Riaz, M.; Mendes, E.; Tempero, "A systematic review

of software maintainability prediction and metrics,"

Empirical Software Engineering and Measurement,

2009. ESEM 2009. 3rd International Symposium on ,

vol., no., pp.367-377, 15-16 Oct. 2009

[5] Rikard Land, “Measurement of Software

Maintainability, Department of computer science,

Malardalen University, ARTES Graduate Student

Conference, March 2002.

[6] Wei Li and Sallie Henry, “Object oriented metrics

which predict Maintainablity”, Department of

computer science, Virginia Polytechnic Institute and

State University, Journal of Systems and Software,

Volume 23, Issue 2, November 1993, Pages 111-122.

[7] Robyn Ball and Philippe Tissot, “ Demonstration of

Artificial Neural Networks in Matlab”, Division of

Nearhsore Research, Taxes A&M University,

available at URL:

http://aiworkshop.tamucc.edu/index_files/NNET%20

Demo.pdf .

[8] Shyam R. Chidamber and Chris F. Kemerer, “A

Metrics Suite for Object oriented Design”, IEEE

Transactions on Software Engineering, Vol. 20, No.

6, june 1994.

[9] Matlab software information, available at URL:

http://www.mathworks.in

[10] Neural network specification, available at URL:

http://www.mathworks.in/products/neural-

network/description3.html

[11] Li-Henry data for UIMS application with details,

available at URL:

http://eprints.cs.vt.edu/archive/00000347/01/TR-93-

05.pdf

http://aiworkshop.tamucc.edu/index_files/NNET%20Demo.pdf
http://aiworkshop.tamucc.edu/index_files/NNET%20Demo.pdf
http://www.mathworks.in/
http://www.mathworks.in/products/neural-network/description3.html
http://www.mathworks.in/products/neural-network/description3.html
http://eprints.cs.vt.edu/archive/00000347/01/TR-93-05.pdf
http://eprints.cs.vt.edu/archive/00000347/01/TR-93-05.pdf

