
Mr.Mitesh Thakkar, Prof.J.S.Shah / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.588-594

588 | P a g e

Logistic Model Tree: A Survey

Mr.Mitesh Thakkar
 1
, Prof.J.S.Shah

2

1
 Semester IV, M.E. IT, Information Technology Department, Shantilal Shah Engineering College, Bhavnagar, India

2
 Professor and Head, Computer department, L.D. College of Engineering, Ahmedabad, India

Abstract - Tree induction methods and linear models are popular techniques for supervised learning tasks, both for the

prediction of nominal classes and numeric values. For predicting numeric quantities, there has been work on combining

these two schemes into „model trees‟, i.e. trees that contain linear regression functions at the leaves. In Logistic Model Tree

(LMT) logistic regression is used instead of linear regression. Their greatest disadvantage is the computational complexity

of inducing the logistic regression models in the tree. This issue can be address by using the AIC criterion instead of

crossvalidation to prevent overfitting these models. In addition, a weight trimming heuristic is used which produces a

significant speedup.

Keywords: Model tree, logistic regression.

1 Introduction
 Two popular methods for classification are linear logistic regression and tree induction, which have somewhat

complementary advantages and disadvantages. The former fits a simple (linear) model to the data, and the process of model

fitting is quite stable, resulting in low variance but potentially high bias. The latter, on the other hand, exhibits low bias but

often high variance: it searches a less restricted space of models, allowing it to capture nonlinear patterns in the data, but

making it less stable and prone to overfitting. So it is not surprising that neither of the two methods is superior in general.

 A more natural way to deal with classification tasks is to use a combination of a tree structure and logistic regression

models resulting in a single tree. Another advantage of using logistic regression is that explicit class probability estimates

are produced rather than just a classification. Logistic Model Tree (LMT) follows this idea.

1.1 Logistic Regression Model

Fitting a logistic regression model means estimating the parameter vectors βj. The standard procedure in statistics is to

look for the maximum likelihood estimate: choose the parameters that maximize the probability of the observed data points.

For the logistic regression model, there are no closed-form solutions for these estimates. Instead, we have to use numeric

optimization algorithms that approach the maximum likelihood solution iteratively and reach it in the limit. Friedman et al.

Propose the LogitBoost algorithm for fitting additive logistic regression models by maximum likelihood (Friedman et al,

2000). These models are a generalization of the (linear) logistic regression models.

1. Start with weights Wij = 1/n, i=1,……,n, j=1,……J, Fj(x)=0 and Pj(x)=1/J ∀j

2. Repeat for m=1,…,M:

(a) Repeat for j=1,….,J

i. Compute working responses and weights in the j
th

 class

ii. Fit the function fmj(x) by a weighted squares regression of zij to xi with weights wij

(b) Set

Mr.Mitesh Thakkar, Prof.J.S.Shah / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.588-594

589 | P a g e

3. Output the classifier argmax

 Figure 1 LogitBoost algorithm (J classes)

Generally, they have the form

Where and the fmj are (not necessarily linear) functions of the input variables. Figure 1 gives the

pseudocode for the algorithm. The variables y
*

ij encode the observed class membership probabilities for instance xi, i.e.

yi is the class label of example xi). The pj(x) are the estimates of the class probabilities for an instance x given by the model

fit so far.

 LogitBoost performs forward stagewise fitting: in every iteration, it computes „response variables‟ zij that encode the

error of the currently fit model on the training examples (in terms of probability estimates), and then tries to improve the

model by adding a function fmj to the committee Fj , fit to the response by least-squared error. As shown in (Friedman et al.,

2000), this amounts to performing a quasi-Newton step in every iteration

1.2 Tree Induction

The goal of supervised learning is to find a subdivision of the instance space into regions labeled with one of the target

classes. Top-down tree induction finds this subdivision by recursively splitting the instance space, stopping when the

regions of the subdivision are reasonably „pure‟ in the sense that they contain examples with mostly identical class labels.

The regions are labeled with the majority class of the examples in that region.

Important advantages of tree models (with axis-parallel splits) are that they can be constructed efficiently and are easy

to interpret. A path in a decision tree basically corresponds to a conjunction of Boolean expression of the form „attribute =

value‟ (for nominal attributes) or „attribute ≤ value‟ (for numeric attributes), so a tree can be seen as a set of rules that say

how to classify instances. The goal of tree induction is to find a subdivision that is fine enough to capture the structure in the

underlying domain but does not fit random patterns in the training data.

The usual approach to the problem of finding the best number of splits is to first perform many splits (build a large tree)

and afterwards use a „pruning‟ scheme to undo some of these splits. Different pruning schemes have been proposed. For

example, C4.5 uses a statistically motivated estimate for the true error given the error on the training data, while the CART

(Breiman et al., 1984) method cross-validates a „cost-complexity‟ parameter that assigns a penalty to large trees.

1.3 The Model

 A logistic model tree basically consists of a standard decision tree structure with logistic regression functions at the

leaves, much like a model tree is a regression tree with regression functions at the leaves. As in ordinary decision trees, a

test on one of the attributes is associated with every inner node. For a nominal (enumerated) attribute with k values, the node

has k child nodes, and instances are sorted down one of the k branches depending on their value of the attribute. For numeric

attributes, the node has two child nodes and the test consists of comparing the attribute value to a threshold: an instance is

sorted down the left branch if its value for that attribute is smaller than the threshold and sorted down the right branch

otherwise. More formally, a logistic model tree consists of a tree structure that is made up of a set of inner or non-terminal

nodes N and a set of leaves or terminal nodes T.

…………......(

1)

(c)

Mr.Mitesh Thakkar, Prof.J.S.Shah / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.588-594

590 | P a g e

Figure 2 and Figure 3 depict the corresponding models. At the leaves of the logistic model tree, the functions F1, F2

determine the class membership probabilities by

Figure 2. Decision tree constructed by the C4.5 algorithm for the „polynomial-noise‟ dataset

 The entire left subtree of the root of the „original‟ C4.5 tree has been replaced in the logistic model tree by the linear

model with

as shown in Figure 3.

Mr.Mitesh Thakkar, Prof.J.S.Shah / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.588-594

591 | P a g e

Figure 3. Logistic model tree constructed by the LMT algorithm for the „polynomial- noise‟ dataset.

2 Basic LMT Algorithm
 Here I listed first the basic “logistic model tree” algorithm by by Niels Landwehr, Mark Hall and Eibe Frank(2004) in

details then I will describe “speeding up the logistic model tree” which is modified algorithm of logistic model tree. And

also the problem in that later.

2.1 Tree Growing Process

 There is a straightforward approach for growing logistic model trees that follows the way trees are built by M5‟. This

involves first building a standard classification tree, using, for example, the C4.5 algorithm, and afterwards building a

logistic regression model at every node trained on the set of examples at that node. Instead, we chose a different approach

for constructing the logistic regression functions, namely by incrementally refining logistic models already fit at higher

levels in the tree. Assume we have split a node and want to build the logistic regression function at one of the child nodes.

Since we have already fit a logistic regression at the parent node, it is reasonable to use it as a basis for fitting the logistic

regression at the child.

2.2 Splitting and Stopping Criteria

 They implemented two different criteria to select the attribute to split on. One is the C4.5 splitting criterion that tries

to improve the purity of the class variable. The other splitting criterion attempts to divide the training data according to the

current values of the working responses in the LogitBoost procedure in Figure 1.

But they could not detect any significant differences between either classification accuracy or tree size between the two

methods. A disadvantage of splitting on the response is that the final tree structure is less intelligible. Hence they made

splitting on the class variable (using the C4.5 splitting criterion) the default option in algorithm.

Tree growing stops for one of three reasons:

i. A node is not split if it contains less than 15 examples. This number is somewhat larger than for standard decision

trees; however, the leaves in logistic model trees contain more complex models, which need more examples for

reliable model fitting.

ii. A particular split is only considered if there are at least 2 subsets that contain 2 examples each. Furthermore, a

split is only considered if it achieves a minimum information gain. This is a heuristic used by the C4.5 algorithm to

avoid overly fragmented splits. When no such split exists, we stop growing the tree.

iii. A logistic model is only built at a node if it contains at least 5 examples, because we need 5 examples for the cross-

validation to determine the best number of iterations for the LogitBoost algorithm. Note that this can lead to

„partially expanded‟ nodes, where for some branches no additional iterations of LogitBoost are performed and so

the model at the child is identical to the model of the parent.

2.3 Pruning the Tree

 As for standard decision trees, pruning is an essential part of the LMT algorithm. They spent a lot of time

experimenting with different pruning schemes. Since their work was originally motivated by the model tree algorithm, they

Mr.Mitesh Thakkar, Prof.J.S.Shah / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.588-594

592 | P a g e

first tried adapting the pruning scheme used by this algorithm. However, we could not find a way to compute reliable

estimates for the expected error rate (resulting in an unstable pruning algorithm), hence we abandoned that approach.

Instead, we employed the pruning method from the CART algorithm (Breiman et al., 1984).

Figure 4 gives the pseudocode for this algorithm, which call LMT.

LMT (examples)

{

root = new Node ()

alpha = getCARTAlpha (examples)

root.buildTree (examples, null)

root.CARTprune (alpha)

}

build Tree (examples, initialLinearModels)

{

numIterations = CV_Iterations (examples, initialLinea Models)

initLogitBoost (initialLinearModels)

linearModels = copyOf (initialLinearModels)

for i = 1...numIterations

logitBoostIteration (linearModels, examples)

split = findSplit (examples)

localExamples = split.splitExamples (examples)

sons = new Nodes[split.numSubsets ()]

for s = 1...sons.length

sons.buildTree (localExamples[s],nodeModels)

}

CV_Iterations (examples, initialLinearModels)

 {

for fold = 1...5

InitLogitBoost (initialLinearModels)

//split into training/test set

train = trainCV (fold)

test = testCV (fold)

linearModels = copyOf (initialLinearModels)

for i = 1...200

logitBoostIteration (linearModels,train)

logErrors[i] += error(test)

numIterations = findBestIteration (logErrors)

Return numIterations

}

Figure 4 Pseudocode for the LMT algorithm.

It calls getCARTAlpha to cross-validate the „cost-complexity parameter‟ for the CART pruning scheme implemented

in CARTPrune. The method buildTree grows the logistic model tree by recursively splitting the instance space. The

argument initialLinearModels contains the simple linear regression functions already fit by LogitBoost at higher levels of

the tree. The method initLogitBoost initializes the probabilities/weights for the LogitBoost algorithm as if it had already

fitted the regression functions initialLinearModels (resuming Logit- Boost at step 2.a in Figure 1). The method

CV_Iterations determines the number of LogitBoost iterations to perform, and logitBoostIteration performs a single

iteration of the LogitBoost algorithm (step 2 in figure 1), updating the probabilities/weights and adding a regression function

to linearModels.

These ideas lead to the following algorithm for building logistic model trees:

i. Tree growing starts by building a logistic model at the root using the LogitBoost algorithm to iteratively fit

simple linear regression functions, using fivefold cross validation to determine the appropriate number of iteration.

ii. A split for the data at the root is constructed. Splits are either binary (for numeric attributes) or multiway (for

nominal ones), the splitting criterion will be discussed in more detail below. Tree growing continues by sorting the

Mr.Mitesh Thakkar, Prof.J.S.Shah / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.588-594

593 | P a g e

appropriate subsets of data to the child nodes and building the logistic models at the child nodes in the following

way: the LogitBoost algorithm is run on the subset associated with the child node, but starting with the committee

Fj(x), weights wij and probability estimates pij of the last iteration performed at the parent node (it is „resumed‟ at

step 2.a of Figure 1). Again, the optimum number of iterations to perform (the number of fjm to add to Fj) is

determined by a fivefold cross validation.

iii. Splitting of the child nodes continues in this fashion until some stopping criterion is met .Once the tree has been

built it is pruned using CART-based pruning.

2.4 Issues in LMT

There are several issues that provide directions for future work. Probably the most important drawback of logistic

model tree induction is the high computational complexity compared to simple tree induction. Although the asymptotic

complexity of LMT is acceptable compared to other methods, the algorithm is quite slow in practice. Most of the time is

spent fitting the logistic regression models at the nodes with the LogitBoost algorithm. It would be worthwhile looking for a

faster way of fitting the logistic models that achieves the same performance. A further issue is the handling of missing

values. At present, LMT uses a simple global imputation scheme for filling in missing values. a more sophisticated scheme

for handling them might improve accuracy for domains where missing values occur frequently.

3 Study of Speeding up Logistic Model Tree Induction
Whatever issues are there in Logistic Model Tree (LMT) [1] are addressed by AIC criteria [2] instead of cross-

validation to prevent overfitting these models. In addition, a weight trimming heuristic is used which produces a significant

speedup.

3.1 Modification to LMT

3.1.1 Weight Trimming:

The idea of weight trimming in association with Logit- Boost is a very simple, yet effective method for reducing

computation of boosted models. In our case, only training instances carrying 100 ・ (1 − β) % of the total weight mass are

used for building the simple linear regression model, where β ∈ [0, 1]. Typically β ∈ [0.01, 0.1]. We used β = 0.1. In later

iterations more of the training instances become correctly classified with a higher confidence; hence, more of them receive a

lower weight and the number of instances carrying 100 ・ (1 − β) % of the weight becomes smaller.

3.1.2 Automatic Iteration Termination:

A common alternative to cross-validation for model selection is the use of an in-sample estimate of the generalization

error, such as Akaike‟s Information Criterion (AIC) [3]. They investigated its usefulness in selecting the optimum number of

LogitBoost iterations and found it to be a viable alternative to cross validation in terms of classification accuracy and far

superior in training time.

AIC provides an estimate of the generalization error when a negative log likelihood loss function is used [3]. Let this

function be denoted as loglik and let N be the number of training instances. Then AIC is defined as

In eq (2) d = i, where i is the iteration number. As i increase, the first term in Equation decreases (because LogitBoost

performs quasi-Newton steps approaching the maximum log-likelihood) and the second term (the penalty term) always

increases. Empirically, this was found to be a good estimate. The optimal number of iterations is the i which minimizes AIC.

Determining the optimal number of iterations in this fashion will be called the First AIC Minimum (FAM).

SimpleLogistic with FAM is compared with the original cross-validation-based approach. Table 1 shows the training time

and classification accuracy for both algorithms on the 13 UCI datasets [2]. FAM consistently produced a significant

speedup on all datasets.

…………......(

2)

Mr.Mitesh Thakkar, Prof.J.S.Shah / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.588-594

594 | P a g e

Table 1 Training time and accuracy for SimpleLogistic

using cross-validation and FAM

Dataset

Training Time Accuracy

SimpleLog

(CV)

SimpleLog

(FAM)

SimpleLog

(CV)

SimpleLog

(FAM)

vowel 77.94 6.87 81.98 80.85

german-credit 7.97 0.59 75.37 75.34

segment 50.55 3.42 95.10 94.67

splice 253.96 77.48 95.86 95.87

Kr-vs-kp 57.28 6.69 97.06 96.38

sick 25.40 1.57 96.68 96.50

spambase 119.28 15.74 92.75 92.69

3.2 Issues in Speeding up Logistic Model Tree

Using AIC criteria instead of cross validation to prevent over fitting this model [2].So time training time is 55 times

faster than the original LMT algorithm. But it does not significantly affecting classification accuracy. And they have check

accuracy only for datasets of relatively low size and dimensionality.

If the AIC is not minimize up to 50 iteration then they have take a minimum iteration 50 as a default. So that number of

iteration may not work for the large and high dimensional dataset and may be accuracy is decrease.

4 Conclusion
 The Speeding up Logistic Model Tree algorithm, which is modification of Logistic Model Tree (LMT), is 10 to 25

time faster in training time. But it does not significantly affecting classification accuracy. These results were measured on

datasets of relatively low size and dimensionality.

5 Future Extension
There are several issues that provide directions for future work. Instead of AIC, modified AIC [4] can be used to

minimize the number of LogitBoost iteration. So algorithm can be speedier. At present, LMT uses a simple global

imputation scheme for filling in missing values. A more sophisticated scheme for handling them might improve accuracy for

domains where missing values occur frequently.

6 References
[1] Niels Landwehr, Mark Hall, and Eibe Frank. “Logistic

 model trees”. Machine Learning, 59(1/2):161–205,

 2005.

[2] Marc Sumner, Eibe Frank and Mark Hall “Speeding up

 Logistic Model Tree Induction.”

[3] H. Akaike. “Information theory and an extension of the

 maximum likelihood principle.” In Second Int

 Symposium on Information Theory, pages 267–281,

 1973.

[4] Fjo De Riddef', Rik Pintelon, Johan Schoukens and

 David Paul Gillikinb “Modified AIC and MDL Model

 Selection Criteria for Short Data Records” (IEEE)

[5] Jerome Friedman, Trevor Hastie, and Robert

 Tibshirani. “Additive logistic regression: a statistical

 view of boosting.”

[6] Marcel Detting and Peter Buhlmann “Boosting for tumor classification with gene expression data.” September 5,

2002.

[7] H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Autom. Control, vol. AC-19, no. 6, pp.

716–723, Dec. 1974.

[8] Claudia Perlich, Foster Provost, Jeffrey S. Simonoff “Tree Induction vs. Logistic Regression: A Learning-Curve

Analysis”.

[9] Breiman, L., H. Friedman, J. A. Olshen, and C. J. Stone: “Classification and Regression Trees. “Wadsworth.1984

