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ABSTRACT 

Image mosaicing is the act of combining two or 

more images. It aims to combine images such that 

no obstructive boundary exists around 

overlapped regions. Emphasis is given on to 

create a mosaic image that contains as little 

distortion as possible from the original images, as 

well as preserving the general appearance of the 

original images. Multiresolution representation 

technique is an effective method for analyzing 

information contents of signals, as it processes the 

signals individually at finer levels, to give more 

accurate results that contains much less 

distortion. Laplacian pyramid, Gaussian pyramid 

and Wavelet transform are types of 

Multiresolution representations. In this work, we 

use Laplacian pyramid using Gaussian pyramid 

which superiors other transforms in context of 

simplicity and working satisfactorily in real time 

domain. Application areas of our subject are 

widespread in the fields like signal analysis, image 

coding, image processing, computer vision and 

still counting. The work on this project will be 

focused on designing a model which balances the 

smoothness around the overlapped region and the 

fidelity of the blended image to the original 

image. 

Keywords – Image processing, Multi-resolution 

image, Mosaicing, Laplacian, Gaussian method. 

 
1. INTRODUCTION 

When two or more images are overlapped to form a 

single mixed image, finding an ideal image 

combination can be difficult. An image mosaic 

processing technique can be applied to greatly reduce 

this difficulty. To mosaic an image is to combine 

overlapped images so that the mixed image contains 

no obstructive boundaries in the transition region 

while care is taken to preserve the general appearance 

of the original images. An image mosaic is typically 

completed in two stages. In the first stage, the 

corresponding points in the two, to-be-combined 

images are identified and registered. This stage is  

 

 

 

usually referred to as image registration. Not all 

applications of image mosaicing require registration, 

such as in movie special effects. In the second stage, 

the intensities of the images are blended after the 

corresponding points have been registered [1].  

 

1.1NEEDFOR MULTIRESOLUTION MOSAICING 

In psychophysics and the physiology of human 

vision, evidence has been gathered showing that the 

retinal image is decomposed into several spatially 

oriented frequency channels. This explains the use of 

Multiresolution decomposition in computer vision 

and image processing research and why 

Multiresolution Spline approach works well for 

image mosaic [3]. The basic concept is to decompose 

the signal spectrum into its Sub spectra, and each sub 

spectrum component can then be treated individually 

based on its characteristic. For example, most nature 

signals will have predominantly low frequency 

components, thus the low-band components contain 

most of significant information, while for a texture 

the most significant information often appears in its 

middle-band component. Thus each channel can be 

processed separately to obtain more precise results in 

the technique of Multiresolution. In this work, design 

of a module that can decompose a given image into 

number of levels depending on the image size has 

been discussed. The Multi-resolution process is 

carried out with the help of Laplacian pyramid using 

Gaussian pyramid [4]. A blending technique needs to 

be implemented for combining two or more images 

into a larger image mosaic. In this procedure, the 

images to be blended are first decomposed into a set 

of band-pass filtered component images. Next, the 

component images in each spatial frequency hand are 

assembled into a corresponding band pass mosaic. In 

this step, component images are joined using a 

weighted average within a transition zone which is 

proportional in size to the wave lengths represented 

in the band. Finally, these band-pass mosaic images 
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are summed to obtain the desired image mosaic. 

When coarse features occur near borders, these are 

blended gradually over a relatively large distance 

without blurring or otherwise degrading finer image 

details in the neighborhood of the border[1,6,7]. 

 

Fig1. A typical multiresolution mosaic image 

2. MULTIRESOLUTION  

The frequency and time information of a signal at 

some certain point in the time-frequency plane cannot 

be known. In other words, we cannot know what 

spectral component exists at any given time instant. 

The best we can do is to investigate what spectral 

components exist at any given interval of time. This 

is a problem of resolution, and it is the main reason 

why WT is popular than STFT. Since the previously 

used transforms like short time Fourier transform 

(STFT), Wigner distributions were not able to give 

good time and frequency resolution. Instead they 

were giving fixed resolution. To be simpler, every 

spectral component is not resolved equally in STFT. 

Thus the information provided by them was highly 

redundant in nature as far as reconstruction of the 

signal is considered. The Fig. 2 clearly shows how 

actually two images are combining to form mosaic 

image. 

 
Fig.2 N level decomposition of image 

First image (consider it as A) is take, then it is 

decomposed up to N level as per requirement of user. 

Similarly we have taken second image (consider it as 

B).Now we need to design mask with same size as 

that of the image size. Mask is nothing but binary 

representation of image in to be combine images. 

This dummy image is used as mask for hiding 

appropriate part of image, i.e.  Mask is a outer part of 

‗A‘ image & inner part of ‗B‘ image. To get 

multiresoved format mask for each level of 

decomposition I have to use low-pass filter and then 

sub-sampled [5].  

 Image is nothing but matrix of values, hence direct 

multiplication of mask with image is taken. Then two 

masked images are obtained, which are then combine 

to form the resultant image at each level of 

resolution. Now Using these entire components 

original image is reconstructed. After reconstruction 

we get the resultant mosaic image. 

 

3. MULTIRESOLUTION TECHNIQUES 

Following are the two important pyramid 

structures.  Hierarchical representation of an 

image is shown in Fig. 3.  

 

 

       Fig. 3 Hierarchical representation of an image 

 

3.1 GAUSSIAN PYRAMID 

The first step in Laplacian pyramid coding is to low-

pass filter the original image g0 to obtain image g1.  

g1 is a "reduced" version of g0 in that both resolution 

The same 5-by-5 pattern of weights w is used to 

generate each pyramid array from its predecessor. 

This weighting pattern, called the generating kernel, 

is chosen subject to certain constraints. For simplicity 

we make w separable 

             W (m, n) = wˆ (m) wˆ (n).                           (1) 

The one-dimensional, length 5, function wˆ is 

normalized on and sample. 

 

                   wˆ (m)  =  12
m=−2                               (2) 

  

And symmetric  

 

Wˆ (i) = wˆ (–i) for i = 0, 1, 2. 

An additional constraint is called equal contribution. 

This stipulates that all nodes at a given level must 

contribute the same total weight (=1/4) to nodes at 

the next higher level [4]. Let wˆ (0) = a, wˆ (–1) = wˆ 
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(1) = b, and wˆ (–2) = wˆ (2) = c in this case equal 

contribution requires that a + 2c = 2b. These three 

constraints are satisfied when 

                     wˆ (0) = a                                            (3) 

              wˆ (-1) = wˆ (1) = ¼                                  (4) 

          wˆ (-2) = wˆ (2) = 1/4 – a/2                            (5) 

 

 
Fig 4.One-dimensional graphic representation of the 

process which generates a Gaussian pyramid  

Fig.4illustrates the contents of a Gaussian pyramid 

generated with a = 0.4. The original image, on the far 

left, measures 257 by 257. This becomes level 0 on 

the pyramid. Each Higher level array is roughly half 

as large in each dimension as its predecessor, due to 

reduced sample density. 

3.2 LAPLACIAN PYRAMID 

Our purpose for constructing the reduced image g1 is 

that it may serve as a prediction for pixel values in 

the original image g0. To obtain a compressed 

representation, we encode the error image which 

remains when an expanded g1 is subtracted from g0. 

This image becomes the bottom level of the 

Laplacian pyramid. The next level is generated by 

encoding g1 in the same way [3, 4]. 

The Laplacian pyramid is a sequence of error images 

L0, L1, LN. Each is the difference between two levels 

of the Gaussian pyramid. Thus, for 0 < 1 < N, 

                     Ll = gl – EXPAND (gl + 1) 

                       = gl— gl + 1. 1.                                 (6) 

Since there is no image gN + 1 to serve as the 

prediction image for gN, we say LN = gN. The original 

image can be recovered exactly by expanding, then 

summing all the levels of the Laplacian pyramid. 

                  𝑔𝑜 =  𝐿𝑖, 𝑖 −𝑁
𝑙=𝑜                                    (7) 

A more efficient procedure is to expand LN once and 

add it to LN – 1, then expand this image once and add 

it to LN – 2, and so on until level 0 is reached and go is 

recovered. This procedure simply reverses the steps 

in Laplacian pyramid generation. 

gN = LN 

And for l = N – 1, N – 2… 0, 

          gl = Ll + EXPAND (gl + 1).                            (8) 

The Laplacian pyramid is a versatile data structure 

with many attractive features for image processing. It 

represents an image as a series of quasi-band passed 

images, each sampled at successively sparser 

densities. The resulting code elements, which form a 

self-similar structure, are localized in both space and 

spatial frequency. By appropriately choosing the 

parameters of the encoding and quantizing scheme, 

one can substantially reduce the entropy in the 

representation, and simultaneously stay within the 

distortion limits imposed by the sensitivity of the 

human visual system.Fig.5summarizes the steps in 

Laplacian pyramid coding. The first step, shown on 

the far left, is bottom-up construction of the Gaussian 

pyramid images g0, g1, gN. The Laplacian pyramid 

images L0, L1, LN are then obtained as the difference 

between successive Gaussian levels [3, 8]. These are 

quantized to yield the compressed code represented 

by the pyramid of values Cl (i, j). Finally, image 

reconstruction follows an expand and sum procedure. 

It should also be observe that the Laplacian pyramid 

encoding scheme requires relatively simple 

computations. The computations are local and may 

be performed in parallel, and the same computations 

are iterated to build each pyramid level from its 

predecessors.  Envision of performing Laplacian 

coding and decoding in real time using array 

processors and a pipeline architecture. 

 
Fig. 5 Summary of the steps in Laplacian pyramid 

coding and decoding  

 

 

 

4. MASK DESIGN 
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In psychophysics and the physiology of human 

vision, evidence has been gathered showing that the 

retinal image is decomposed into several partially 

oriented frequency channels. This explains why 

Multiresolution decomposition methods are so 

popular in computer vision and image processing 

research and why Multiresolution Spline approach 

works well for image mosaic [3, 7, 9]. Since the low-

frequency content of a signal are often sufficient in 

many instances (such as the content of an image), and 

the detail information resembles the high frequency 

components (such as edge of an image), thus, the 

width of the transition zone T is chosen according to 

the wave length represented in each band. That is, for 

lower frequency components, the width of transition 

zone T is chosen to be larger than that of higher 

frequency components. This implies that low-

frequency components "bleed" across the boundary 

of mosaic region further than High-frequency 

components do. Actually as described in the above 

section, the signal cm+1,n at resolution m+l is a 

smoothed down-sampled approximation of cm,n at 

resolution m, and dm+l,n is just the detail (or 

difference) information between  cm,n  and 

cm+1,n.Therefore , using the same width of transition 

zone between detail component of resolution m and 

its down-sampled components in resolution m+l 

means the actual transition zone of the low-frequency 

components is larger than that of the high-

frequency[3].  

 
Fig. 6 The weighted average function W(x) 

To simplify and generalize arbitrary shape mosaic 

both for 1-D and 2-D signals [2], the transition zone 

T and the weighting function are not explicitly 

expressed, instead, another Multiresolution structure 

of mask signal is introduced. The mask signal is a 

binary representation which describes how two 

signals will be combined. For example, two signals A 

and B will be combined to form a mosaic signal, and 

the mask signal S is a binary signal in which all 

points inside the mosaic region are set to 1 and those 

outside the mosaic region are set to 0. As the way to 

generate a sequence of lower resolution signal (not 

the detail signal) describe in the above section, the 

mask signal S is low-pass filter and sub sampled to 

construct its Multiresolution structure c’Mn(S)… 

c’1n(S) c’2n(S) and then each smoothed version of the 

mask signal will be used as the weighting function in 

its corresponding resolution level. The low-pass filter 

used to construct Multiresolution structure of the 

mask signal need not be the same as the DWT used, 

which is why here we use c‘Mn(S) instead of 

cMn(S).Now, both 1-D and 2-D DWT-based signal 

mosaics will be described. 

4.11-D SIGNAL MOSAIC 

Suppose two I-D signals A(x) and B(y) will be 

combined together to form a new signal C(x), and 

complete overlapping of the two signals is assumed. 

A mask signal S(x) is designed to describe the mosaic 

region.  

4.2EXTENSION TO 2-D IMAGE MOSAIC 

There are various expressions of I-D wavelet 

transform to higher dimensions and Mallat's method 

is adopted in this works. 

The 2-D wavelet basis function can then be expressed 

by the tensor product of two I-D wavelet basis 

functions along the horizontal and vertical directions. 

Then, the scaling function is [2],  

                     Ф(x, y) =Ф(x) Ф(y)                            (9) 

And the three 2-D wavelets are defined as, 

                  Ψ‖(x, y) = Ф(x) ψ(y)                           (10) 

                  Ψv(x, y) =ψ(y) Ф(x)                            (11) 

                 ΨD(x, y) = ψ(x) ψ(y)                             (12) 

 

And the corresponding 2-D image decomposition and 

Reconstruction. A 2-D biorthogonal Multiresolution 

analysis can be obtained by means of a tensor 

product, from two one-dimensional (1-D) 

biorthogonal Multiresolution analyses, which obtains 

the scaling functions Ø and Ψ[1,2], 

      Φj, k, m(x) =2
-j 

Ф (2
-j
 x-k) Ф (2

-j
 y-m)                (13) 

     Ψ
H

j, k, m(x) =2
-j 

Ф (2
-j
 x-k) ψ (2

-j
 y-m)                (14) 

     Ψ
V

j, k, m(x) =2
-j 

ψ (2
-j
 x-k) Ф (2

-j
 y-m)               (15) 

          

    Ψ
D

j, k, m(x) =2
-j 

ψ (2
-j
 x-k) ψ (2

-j
 y-m)                (16) 

The nth Multiresolution analysis space can be 

projected into subspace images and which is given as, 

f(x, y), ФN, k,m(x,y) = 𝑓(𝑥, 𝑦)
∞

−∞
 ф𝑁, 𝑘,𝑚(𝑥, 𝑦)dxdy                (17)                                                                                    
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The original image can then be reconstructed by 

summing all of the subspace images, i.e 

       F(x, y) = 𝐹𝑗(𝑥, 𝑦)𝑁
𝑗=0                                     (18)    

We can be expressed as the following polynomial 

weighting formula to merge the corresponding points 

in each image [1], 

M€j(Ij(x,y),rj(x,y)=cj,0(x,y)+cj,11(x,y)Ij(x,y)+Cj,12(x,y)rj(

x,y)+Cj,21(x,y)Ij
2
(x,y)+Cj,22(x,y)Ij

2
(x,y)+    Cj,23(x,y)Ij 

(x,y) rj(x,y)+Higher order terms(x,y)       

 

5. BLENDING 

The images to be joined overlap so that it is possible 

to compute the gray level value of points within a 

transition zone as a weighted average of the 

corresponding points in each image [3]. Suppose that 

one image, Fl(i), is on the left and the other, Fr(i), is 

on the right, and that the images are to be blended at 

a point ˆi (expressed in one dimension to simplify 

notation). Let Hl (i) be a weighting function which 

decreases monotonically from left to right and let Hr 

(i) = 1 – Hl (i). 

Then, the blended image F is given by  F(i) = Hl(i—ˆi ) 

Fl(i) + Hr(i— ˆi ) Fr(i)[3].                                                        (19) 

 
Fig. 7 A pair of images may be represented as a pair 

of surfaces above the (x, y) plane  

 

It is clear that with an appropriate choice of H, the 

weighted average technique will result in a transition 

which is smooth. However, this alone does not ensure 

that the location of the boundary will be invisible. Let 

T be the width of a transition zone over which Hl 

changes from 1 to 0. If T is small compared to image 

features, then the boundary may still appear as a step 

in image gray level, albeit a somewhat blurred step. 

If, on the other hand, T is large compared to image 

features, features from both images may appear 

superimposed within the transition zone, as in a 

photographic double exposure. The size of the 

transition Zone, relative to the size of image features, 

plays a critical role in image blending. To eliminate a 

visible edge the transition width should be at least 

comparable in size to the largest prominent features 

in the image [3]. 

To minimize the image value variation, we impose a 

constraint that allows the pixel values of a blended 

image to be as close as possible to the corresponding 

pixel values of the to-be-combined images. To 

minimize the first derivative variation we impose the 

constraint that requires the first derivative of the 

mosaic images to consistently agree with that of the 

to-be-combined image. We formulate our energy 

functional at scale 2
j 
as, 

E*
blend (fj, lj, rj) =  𝐸𝑏𝑙𝑒𝑛𝑑

€𝑗

−€𝑗
(fj, lj, rj) dx 

              𝐸𝑖𝑚𝑎𝑔𝑒
€𝑗

−€𝑗
(fj, lj, rj) +λ2

j Ederiv (fj, lj, rj) dx              (20) 

In general, the left side of a mosaic image should be 

similar to the left to-be-combined image, and the 

right side to the right   To-be-combined image and is 

define as [1], 

                          (21) 
Then, we can write the term of the image value 

variation 

                                                                       (22) 

6. RESULTS AND DISCUSSIONS 
This section gives brief idea about what how 

mosaicing can be practically implemented. For this 

the image used is having the dimensions of 512x512. 

Due to its size it is decomposable unto 2^ (9) (9-1) 

=8 stages. At first the image is decomposed into two 

stages with coefficient from all the stages are saved. 

Then designing the mask, we have selected the mask 

size same as image size. 

Now a mask has to be designed as per the 

requirement. In this case, we want to place the face of 

image shown in Fig. 8 onto the face of some other 

person. So, we have designed a mask which has 

matrix in which all the coefficients are 1(white) for 

the face region. Then the original image is multiplied 

with the mask to obtain the image in result (i.e. result 

B). 



M.K.NEHARKAR, PROF.S.K.SUDHANSU, Dr.VEERESH G.K / International Journal of Engineering 

Research and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2, Mar-Apr 2012, pp.020-025 

25 | P a g e  

 

Now we take other image from which we just have to 

extract the face of the person which in this case is 

Mr. George Bush. So, while designing the mask, we 

need to take complement of the mask that design for 

previous section. Actual Mosaicing is done with 

result images from stages one (result A) and two 

(result B) which gives final result image. 

 
(a)Mask design 

 

 

 

 
 

   (b)Combined image  

 

 

 

 
(c) Multi-resolved image 

    Fig. 8 Image mosaicing using multiresolution.  

7. CONCLUSIONS 

The Laplacian pyramid using Gaussian pyramid have 

been discussed which are used as tools for image 

mosaic. A binary mask image is used to simplify 

precise shape mosaic. Special mosaic effects can also 

be achieved by combining components with specific 

frequency. 
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