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Abstract 
Most of the Memory cells have been protected from 

soft errors for more than a decade; due to the increase 

in soft error rate in logic circuits, the encoder and 

decoder circuitry around the memory blocks have 

become susceptible to soft errors as well and must also 

be protected .This project propose a new approach to 

design fault-secure encoder and decoder circuitry for 

memory designs. The key novel contribution of this 

project is identifying and defining a new class of error-

correcting codes whose redundancy makes the design 

of fault-secure detectors (FSD) particularly simple. In 

this project, a fault-tolerant nano-memory architecture 

is implemented which tolerates transient faults both in 

the storage unit and in the supporting logic (i.e., 

encoder, decoder (corrector), and detector 

circuitries).In this project, the Euclidean Geometry 

low density parity check (EG-LDPC) codes have the 

fault-secure detector capability will be proved. Using 

some of the smaller EG-LDPC codes, we can tolerate 

bit or nanowire defect rates of 10% and fault rates of 

10
-18

 upsets/device/cycle, An unified approach is 

presented to tolerate permanent defects and transient 

faults. This unified approach reduces the area 

overhead. 

Keywords: Decoder, encoder, fault tolerant, 

memory 

 

I. Introduction and Motivation 
Nanotechnology  provides smaller,faster, and lower 

energy devices which allow more powerful and 

compact circuitry; however, these benefits come with 

a cost—the nanoscale devices may be less reliable. 

Thermal and shot-noise estimations [1], [2] alone 

suggest that the transient fault rate of an individual 

nanoscale device (e.g., transistor or nanowire) may be 

orders of magnitude  

higher than today‘s devices. As a result, we can expect 

combinational logic to be susceptible to transient 

faults in addition to storage cells and communication 

channels. Therefore, the paradigm of protecting only 

memory cells and assuming the surrounding circuitries 

(i.e., encoder and decoder) will never introduce 

errorsis no longer valid.A mathematical definition of 

ECCs which have simple FSD which do not requiring 

the addition of further redundancies in order to achieve 

the fault-secure property. Identification and proof that 

an existing LDPC code (EG-LDPC) has the FSD  

 

prooperty. A detailed ECC encoder, decoder, and 

corrector design that can be built out of fault-prone 

circuits when protected by this fault-secure detector 

also implemented in fault-prone circuits and guarded 

with a simple OR gate built out of reliable circuitry . 

        To further show the practical availability of 

these codes, we work through the engineering design 

of a nanoscale memory system based on these 

encoders and decoders including the Memory 

banking strategies and scrubbing, Reliability analysis, 

Unified ECC scheme for both permanent memory bit 

defects and transient upsets. 

II  Fault-Tolerant Computing Using Hybrid 

Nano-CMOS Architecture 
Architectures based on nanoscale molecular devices 

are attracting attention for replacing CMOS 

architectures at the end of the semiconductor 

roadmap. The two most promising nanotechnologies, 

according to ITRS, are silicon nanowires and carbon 

nanotubes. Although they offer unmatched densities 

for building logic, interconnect and memory, they 

suffer from very defect-prone manufacturing 

processes. This is further exacerbated by testing 

complexities where it is nearly impossible to detect 

all defects in a large nanoscale chip. Furthermore, the 

small structures in nanoscale architectures are 

susceptible to transient faults which can produce 

arbitrary soft errors. As a result, fault tolerance is 

necessary to make nanoscale architectures practical 

and realistic. 

We propose an architecture that can tolerate a large 

number of undetected manufacturing faults as well as 

a large rate of transient faults. Our architecture is 

characterized by multiple levels of redundancy and 

majority voting to correct errors caused by such 

faults. A key aspect of the architecture is that it 

contains a judicious balance of both nanoscale and 

traditional CMOS components. A companion to the 

architecture is a compiler with heuristics tailored to 

quickly and compactly map logic onto partially 

defective components. Experimental results 

demonstrate the efficacy of the architecture. Low-

Density Parity-Check Codes Based on Finite 

Geometries. Later,a geometric approach to the 

construction of low-density parity-check (LDPC) 

codes has were found.Four classes of LDPC codes 
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are constructed based on the lines and points of 

Euclidean and projective geometries over finite fields. 

Codes of these four classes have good minimum 

distances and their Tanner graphs have girth 6. Finite-

geometry LDPC codes can be decoded in various 

ways, ranging from low to high decoding complexity 

and from reasonably good to very good performance. 

They perform very well with iterative decoding. 

Furthermore, they can be put in either cyclic or quasi-

cyclic form. Consequently, their encoding can be 

achieved in linear time and implemented with simple 

feedback shift registers.  

III Coding Scheme: 
The technique introduced in this work 

exploits the existing structure of the ECC to guarantee 

the fault-secure property of the detector unit without 

adding redundant computations. We start with ECC 

definition for our fault-secure detector capable codes. 

its parity-check matrix and generator matrix are the 

cyclic shifts of their first rows. The checking or 

detecting operation is the following vector-matrix 

multiplication. 

                  S = C×HT 

Where, H is an (n−k) ×n Parity-Check matrix. (n − k)-

bit vector S is called syndrome vector. 

A syndrome vector is zero if C is a valid 

codeword and non-zero if C is an erroneous codeword. 

3.1 Creating a parity check matrix: 

The parity check matrix for a given code can 

be derived from its generator matrix and (vice-versa). 

If the generator matrix for an [n, k]-code is in standard 

form 

        G = [Ik | P] 

Then the parity check matrix is given by 

                  H= [-P
T
 | I

 
n-k]  

Where ‗I‘ is a (n-k) identity matrix. 

‗P‘ is a k x (n-k) matrix that generates parity 

bits.Because, GH
T 

= P − P = 0. 

 Like the general parity-prediction technique 

[4] concurrently generates (predicts) the parity-bits of 

the encoder 

outputs (encoded bits) from the encoder inputs 

(information bits).For any valid codeword x, Hx = 0. 

For any invalid codeword, the syndrome vector S 

satisfies. The rows of a parity check matrix are parity 

checks on the code words of a code. That is, they show 

how linear combinations of certain digits of each 

codeword equal zero. 

3.2 ECC with Fault Secure Detector: 

In this proposed system the encoder is 

protected with parity-prediction and parity checker. 

The decoder is protected by adding a code checker 

(detector) block. If the code checker detects a non-

codeword, then the error in the decoder is detected. 

Here we propose a multiple-error fault tolerant 

decoder and encoder that are general enough for any 

decoder and encoder implementation and for any 

kind of ECC that satisfies the restricted ECC 

definition. The restricted ECC definition which 

guarantees a fault-secure detector capable ECC is as 

follows: 

Let C be an ECC with minimum distance d. 

C is FSD-ECC if it can detect any combination of 

overall (d – 1) or fewer errors in the received 

codeword and in the detector circuitry. 

3.3 LDPC codes: 

LDPC codes have several advantages, which 

have made them popular in many communication 

applications like low density of the encoding 

matrix,Easy iterative decoding, generating large code 

words that can approach Shannon‘s limit of coding.  

 

An LDPC code is defined as the null space 

of a parity check matrix H that has the following 

properties like 1. Each row has ρ number of 1‘s and 

each column has γ number of 1‘s, the number of 1‘s 

that are common between any two columns (λ) is no 

greater than 1, i.e., λ = 0 or 1 and both ρ and γ are 

small compared to the length of the code and the 

number of rows in H.  

As both ρ and γ are very small compared to 

the code length and the number of rows in the matrix 

H, H has a low density of 1‘s. Hence H is said to be a 

low density parity check matrix and the code defined 

by H is said to be a low-density parity check code. 

The density of H (r) is defined to be the ratio of the 

total number of 1‘s in H to the total number of entries 

in H  in this case r = ρ/n = γ/J, where J is the number 

of rows in H. This kind of LDPC code is said to be a 

(γ, ρ)-regular LDPC code. If the weights of all the 

columns or rows in H are not the same, then it is 

called an irregular LDPC code. 

 

3.4 Euclidean Geometry LDPC Codes: 
   Let EG be a Euclidean Geometry with n points and 

j lines. EG is a finite geometry that is shown to have 

the following fundamental structural properties: 

1) every line consists of points; 

2) any two points are connected by exactly one line; 

3) every point is intersected by lines; 

4) two lines intersect in exactly one point or they are 

parallel; 

i.e., they do not intersect.  

Let H be a j x n binary matrix, whose rows and 

columns corresponds to lines and points in an 

Euclidean geometry respectively, where hij =1 if and 

only if the i
th

 line of EG contains the j
th

 point of EG, 

and hij =0  otherwise.  

A row in H displays the lines that intersect at a 

specific point in EG and has weight ρ . A column in 

H displays the lines that intersect at a specific point 



Lavanya Thunuguntla,  Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of 

Engineering Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.comVol. 2, Issue 

2,Mar-Apr 2012, pp.292-299 

294 | P a g e  

 

in EG and has a specific weight  γ . The rows of H are 

called the incidence vectors of the lines in EG and the 

columns of H are called the intersecting vectors of the 

points in EG. Therefore, H is the incidence matrix of 

the lines in EG over the points in EG. It is shown in 

[3] that H is a LDPC matrix, and therefore the code is 

an LDPC code. 

Aspecial subclass of EG-LDPC codes, type-I 2-D 

EG-LDPC,is considered here. It is shown in [3] that 

type-I 2-D EG-LDPC have the following parameters 

for any positive integer t > 2: 

• Information bits, k=2
2t

 – 3
t
 

• Length, n =2
2t

 – 1 

• Minimum distance, d min =2 
t 
+1 

• Dimensions of the parity-check matrix, n x n 

• Row weight of the parity-check matrix, p =2
t
 

• Column weight of the parity-check matrix, y =2
t 

Data bits stay in memory for a number of cycles and, 

during this period, each memory bit can be upset by a 

transient fault with certain probability. Therefore, 

transient errors accumulate in the memory words over 

time. In order to avoid accumulation of too many 

errors in any memory word that surpasses the code 

correction capability, the system must perform 

memory scrubbing. 

Memory scrubbing is the process of periodically 

reading memory words from the memory, correcting 

any potential errors, and writing them back into the 

memory (e.g., [22]). This feature is shown in the 

revised system overview in Fig. 10. To perform the 

periodic scrubbing operation, the normal memory 

access operation is stopped and the memory performs 

the scrub operation. 

  The information bits are fed into the 

encoder to encode the information vector, and the 

fault secure detector of the encoder verifies the 

validity of the encoded vector. If the detector detects 

any error, the encoding operation must be redone to 

generate the correct codeword. The codeword is then 

stored in the memory. During memory access 

operation, the stored codeword‘s will be accessed 

from the memory unit. Codeword‘s are susceptible to 

transient faults while they are stored in the memory; 

therefore a corrector unit is designed to correct 

potential errors in the retrieved codeword‘s. 

In our design all the memory words pass 

through the corrector and any potential error in the 

memory words will be corrected. Similar to the 

encoder unit, a fault-secure detector monitors the 

operation of the corrector unit. All the units shown in 

figure are implemented in fault-prone, nanoscale 

circuitry; the only component which must be 

implemented in reliable circuitry are two OR gates 
 

 

 

 

 
                    Fig 3.1 Fault tolerant memory architecture, with pipeline corrector 

that accumulate the syndrome bits for the detectors. 

Data bits stay in memory for a number of cycles and, 

during this period, each memory bit can be upset by a 

transient fault with certain probability. Therefore, 

transient errors accumulate in the memory words over 

time.  

3.5 Encoder 

The encoder structure of a systematic code 

calculates the parity function of each parity bit based 

on the information bits. Each parity function is a xor 

gate similar to the detector. Therefore the encoder 

circuitry consists of (n − k) xor gates. An n -bit 

codeword c, which encodes a k-bit information vector 

i is generated by multiplying the k-bit information 

vector with a kxn bit generator matrix G; i.e., c=i.G. 

EG-LDPC codes are not systematic and the 

information bits must be decoded from the encoded 

vector, which is not desirable for our fault-tolerant 

approach due to the further complication and delay 

that it adds to the operation. However, these codes 

are cyclic codes. We convert the cyclic generator 

matrices to systematic generator matrices for all the 

EG-LDPC codes under consideration. 

 The code under consideration is a (15, 7, 5) EG-

LDPC code. We used this code as an example to 

concretely illustrate the concept of the fault secure 

encoder, decoder, and checker; and the 

implementation of these units. We used the procedure 



Lavanya Thunuguntla,  Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of 

Engineering Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.comVol. 2, Issue 

2,Mar-Apr 2012, pp.292-299 

295 | P a g e  

 

presented in [3] and  [5] to convert the cyclic generator 

matrices to systematic generator matrices for all the 

EG-LDPC codes under consideration. The (15, 7, 5) 

EG-LDPC code has the generator polynomial 

l+x
4
+x

6
+x

7
+x

8    ….         
(1)                                                 

This generator polynomial will result in the 

generator matrix, shown in Figure 4.2(a) below. We 

perform linear row operations to make this cyclic non- 

systematic generator matrix into systematic form. We 

perform the following operations: 

          i0=i0+i4+i6   ....    (2)                                                                                                                   

          i1 = i1 + i5   ….        (3)                                                                         

          i2=i2+i6     ….    (4)                                                              

This systematic form is presented in Figure 

3.2. This is the correct representation of this 

systematic format.Based on this new generator matrix 

encoder shown in Figure 3.3   

                             

              
Fig 3.2 The generator matrix of (15, 7, 5) EG-

LDPC code in cyclic format 

                             

 
     Fig 3.3  The generator matrix of (15, 7, 5) EG-

LDPC codes in systematic format 

    Fig 3. 4 Systematic encoder circuit of  

(15, 7, 5) EG-LDPC codes 

3.6 Fault Secure Detector 

The core of the detector operation is to 

generate the syndrome vector, which is basically 

implementing the following vector-matrix 

multiplication on the received encoded vector c and 

parity-check matrix H: s = c×H^T, and therefore each 

bit of the syndrome vector is the product of the 

following vector-vector multiply: si = c · hi^ T , 

where hi^T is the transposed of the ith row of the 

parity-check matrix. The above product is a linear 

binary sum over digits of c where the corresponding 

digit in hi is 1. This binary sum is implemented with 

a xor gate. Since the row weight of the parity-check 

matrix is p, to generate one digit of the syndrome 

vector we need a p-input xor gate, or (p− 1) 2-input 

xor gates in a tree structure. For the whole detector, it 

takes n(p − 1)2-input xor gates. An error is detected if 

any of the syndrome bits has a nonzero value.  

 

 
  Fig 3.5: Fault-secure detector for (15, 7, 5) EG-

LDPC code 

The final error detection signal is 

implemented by an OR function of all the syndrome 

bits. The output of this n-input or gate is the error 

detector signal. In order to avoid a single point of 

failure, we must implement the OR gate in a reliable 

substrate i.e., we use a litho graphic scale wired-or. 

This n-input wired-or is much smaller than 

implementing the entire n (p − 1) 2-input XOR at the 

lithographic scale. 

 

IV Memory 
A method for operating a memory cell array, 

the method comprising assigning word lines of a 

memory cell array as addresses for writing sets of 

data thereto from a cache memory, and scrambling 

addresses of the sets of data by writing a first chunk 

of the particular set of data from the cache memory to 

a first word line of the array, and writing a second 

chunk of the particular set of data from the cache 

memory to a second word line of the array, the first 

chunk comprising a first subset of the particular set of 

data and the second chunk comprising a second 

subset of the particular set of data. 
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      Fig 4.1: Memory block diagram 

4.4.1 Nano-Memory Architecture Model: 

Here Nano-Memory and NanoPLA 

architectures to implement the memory core and the 

supporting logic, respectively. Nano-Memory and 

Nano PLA are based on nanowire crossbars. The 

Nano-Memory number of cycles and, during this 

period, each memory bit can be upset by a transient 

fault with certain probability. Therefore, transient 

errors accumulate in the memory words over time. In 

order to avoid accumulation of too many errors in any 

memory word that surpasses the code correction 

capability, the system must perform memory 

scrubbing. Memory scrubbing is the process of 

periodically reading memory words from the memory, 

correcting any potential errors, and writing them back 

into the memory. Architecture developed in can 

achieve greater than 10
11

 b/cm
2
 density even after 

including the lithographic-scale address wires and 

defects.  

This design uses a nanowire crossbar to store 

memory bits and a limited number of lithographic 

scale wires for address and control lines. Fig. 3 shows 

a schematic overview of this memory structure. The 

fine crossbar shown in the centre of the picture stores 

one memory bit in each crossbar junction. To be able 

to write the value of each bit into a junction, the two 

nanowires crossing that junction must be uniquely 

selected and an adequate voltage must be applied to 

them. The nanowires can be uniquely selected through 

the two address decoders located on the two sides of 

the memory core. 

         

            

 
     Fig 4.2 Structure of NanoMemory core 

4.1 Corrector 
One-step majority-logic correction is a fast 

and relatively compact error-correcting technique. 

There is a limited class of ECCs that are one-step-

majority correctable which include type-I two-

dimensional EG-LDPC. 

4.2 One-Step Majority-Logic Corrector: 

 

One-step majority logic correction is the 

procedure that identifies the correct value of a each 

bit in the codeword directly from the received 

codeword; this is in contrast to the general message-

passing error correction strategy which may demand 

multiple iterations of error diagnosis and trial 

correction. Avoiding iteration makes the correction 

latency both small and deterministic. This technique 

can be implemented serially to provide a compact 

implementation or in parallel to minimize correction 

latency.  

This method consists of two parts: 1) 

generating a specific set of linear sums of the 

received vector bits and 2) finding the majority value 

of the computed linear sums. The majority value 

indicates the correctness of the code-bit under 

consideration; if the majority value is 1, the bit is 

inverted, otherwise it is kept unchanged. The circuit 

implementing a serial one-step majority logic 

corrector for (15, 7, 5) EG-LDPC code is shown in 

Fig.4.3. 
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Fig 4.3 Serial one-step majority logic corrector 

structure to correct last bit (bit 14th) of 15-bit (15, 

7, 5)        EG-LDPC code. 

 

V Circuit Implementation 
Here majority circuit implementation gate use 

Sorting Networks the majority gate has application in 

many other error-correcting codes, and this compact 

implementation can improve many other applications.  

We use binary Sorting Networks to do the sort 

operation of the second step efficiently. An -input 

sorting network is the Structure that sorts a set of n 

bits, using 2-bit sorter building blocks. Fig.5.1 shows a 

4-input sorting network. Each of the vertical lines 

represents one comparator which compares two bits 

and assigns the larger one to the top output and the 

smaller one to the bottom [see Fig.5.1 (b)]. The four-

input sorting network, has five comparator blocks, 

where each block consists of two two-input gates; 

overall the four-input sorting network consists of ten 

two-input gates in total.              

  Fig 

5.1 Four-input sorting network; (a) each vertical 

line shows a one-input comparator. (b) One 

comparator structure 

5.1 Serial Corrector: 

As mentioned earlier, the same one-step 

majority-logic corrector can be used to correct all the n 

bits of the received codeword of a cyclic code. To 

correct each code-bit, the received encoded vector is 

cyclic shifted and fed into to the XOR gates as shown 

in Fig 4.5.1. The serial majority corrector takes cycles 

to correct an erroneous codeword. If the fault rate is 

low, the corrector block is used infrequently; since the 

common case is error-free codewords, the latency of 

the corrector will not have a severe impact on the 

average memory read latency. The serial corrector 

must be placed off the normal memory read path.The 

memory words retrieved from the memory unit are 

checked by detector unit. If the detector detects an 

error, the memory word is sent to the corrector unit to 

be corrected, which has the latency of the detector 

plus the round latency of the corrector. 

 

 
 Fig 5.2 Partial system overview with serial 

corrector 

 

5.2 Parallel Corrector: 

 

  For high error rates, the corrector is used 

more frequently and its latency can impact the system 

performance. Therefore we can implement a parallel 

one-step majority corrector which is essentially 

copies of the single one-step majority-logic corrector. 

All the memory words are pipelined through the 

parallel corrector. This way the corrected memory 

words are generated every cycle. The detector in the 

parallel case monitors the operation of the corrector, 

if the output of the corrector is erroneous; the 

detector signals the corrector to repeat the operation. 

Note that faults detected in a nominally corrected 

memory word arise solely from faults in the detector 

and corrector circuitry and not from faults in the 

memory word. Since detector and corrector circuitry 

are relatively small compared to the memory system, 

the failure rate of these units is relatively low.  

However, when the detector observers an 

error, the memory word must pass through the 

corrector to be corrected. The total number of cycles 

that will be lost is equal to the latency of the corrector 

and the detector for our serial corrector design, the 

main latency is due to the corrector. For larger codes, 

where the serialized corrector can take a long time, 

multiple copies of the corrector can be used to reduce 

the throughput loss. Longer scrubbing intervals 

increase the number of errors accumulated in the 

memory and therefore more retrieved memory words 

have to go through the correction operation.  

5.3 FPGA: 

A Field-programmable Gate Array (FPGA) 

is an integrated circuit designed to be configured by 

the customer or designer after manufacturing—hence 

"field-programmable".  

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
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The FPGA configuration is generally 

specified using a hardware description 

language (HDL), similar to that used for 

an application-specific integrated circuit (ASIC). 

FPGAs can be used to implement any logical function 

that an ASIC could perform. The ability to update the 

functionality after shipping is the partial re-

configuration of the portion of the design and the low 

non-recurring engineering costs relative to an ASIC 

design, offer advantages for many 

applications.

 
 

       Fig 5.3 Common FPGA Architecture 

The Spartan®-3E family of Field-

Programmable Gate Arrays (FPGAs) is specifically 

designed to meet the needs of high volume, cost-

sensitive consumer electronic applications. The five-

member family offers densities ranging from 100,000 

to 1.6 million system gates. 

These Spartan-3E FPGA enhancements, 

combined with advanced 90 nm process technology, 

deliver more functionality and bandwidth per dollar 

than was previously possible, setting new standards in 

the programmable logic industry. 

VI Theoretical Calculations 
After successfully compiling an FPGA design 

using the Xilinx development software, the design can 

be downloaded using the iMPACT programming 

software and the USB cable. 

The information bits are fed into the encoder 

to encode the information vector, and the fault secure 

detector of the encoder verifies the validity of the 

encoded vector.7-bit information vector is applied to 

encoder module as shown below: 

Input message vector = i0 i1 i2 i3 i4 i5 i6 

 = 000 0010 

The encoded vector consists of information bits 

followed by parity bits. 

Codeword = [C0 C1 …. C14] 

C = [I : P]; 

I = Message Part; 

P= Parity Part; P = [P0, P1, P2, P3, P4, P5, P6, P7] 

P0= i0 xor i1 xor i3 =0 + 0 + 0 =0; 

P1= i1 xor i2 xor i4 = 0 +0+0 = 0; 

P2= i2 xor i3 xor i5 = 0 +0+1 = 1; 

P3= i3 xor i4 xor i6 = 0 +0+0 = 0; 

P4= i0 xor i1 xor i3 xor i4 xor i5 = 0 +0+0+0+1 = 1; 

P5= i1 xor i2 xor i4 xor i5 xor i6 = 0+0 +0+1+0 = 1; 

P6= i0 xor i1 xor i2 xor i5 xor  

i6 = 0+0+0+1+0 = 1; 

P7= i0 xor i2 xor i6 = 0 +0+0 = 0; 

 Code word = (000 0010 0010 1110) 

The checking or detecting operation is the following 

vector-matrix multiplication 

              S = C×H
T 

Syndrome vector is zero if c is a valid codeword and 

non-zero if c is an erroneous codeword.
 

 
S = 0000 0000 

Hence received codeword is valid code word. 

Original Codeword = (000 0010 0010 1110) 

 For 1
st
 cycle, Error Codeword = (000 0011 0010 

1111), 

 1
st
 xor gate inputs: 0111,Output: 1 

 2
nd

 xor gate inputs: 0111,Output:1 

 3
rd

 xor gate inputs: 0011, Output:0 

 4
th

 xor gate inputs: 0001,Output:1                 

Majority gate inputs are: 1101, for this condition 

majority gate output = 1 

Majority gate value = 1 then invert the bit present in 

14
th

 position 

Majority gate value = 0 then bit position is 

unchanged. After 15 th cycle, Codeword: (000 0010 

0010 1110) i.e.  Correct Codeword. 

VII Conclusion 
In this paper, fault-tolerant memory system is 

presented and it is capable of tolerating errors not 

only in the memory bits but also in the supporting 

logic including the ECC encoder and corrector using 

Euclidean Geometry low density parity check (EG-

LDPC) codes. These codes have the fault-secure 

detector capability (FSD). Using these FSDs, a fault-

tolerant encoder and corrector is designed, where the 

fault-secure detector monitors their operation. An 

unified approach is presented to tolerate permanent 

defects and transient faults. This unified approach 

reduces the area overhead. Without this technique to 

tolerate errors in the ECC logic, reliable encoders and 

decoders are required. 
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