
Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.comVol. 2, Issue 2,Mar-Apr 2012, pp.292-299

292 | P a g e

Secure Transmission for Nanomemory using EG-LDPC

Lavanya Thunuguntla * , Bindu Madhavi K **, Ramesh Kumar Reddy C ***
* (Associate Professor, Department of ECE, HITAM, Hyderabad, India)

** (Assistant Professor, Department of ECE, HITAM, Hyderabad, India)

*** (M.Tech (VLSI System design) II Year, Department of ECE, HITAM, Hyderabad, India,)

Abstract
Most of the Memory cells have been protected from

soft errors for more than a decade; due to the increase

in soft error rate in logic circuits, the encoder and

decoder circuitry around the memory blocks have

become susceptible to soft errors as well and must also

be protected .This project propose a new approach to

design fault-secure encoder and decoder circuitry for

memory designs. The key novel contribution of this

project is identifying and defining a new class of error-

correcting codes whose redundancy makes the design

of fault-secure detectors (FSD) particularly simple. In

this project, a fault-tolerant nano-memory architecture

is implemented which tolerates transient faults both in

the storage unit and in the supporting logic (i.e.,

encoder, decoder (corrector), and detector

circuitries).In this project, the Euclidean Geometry

low density parity check (EG-LDPC) codes have the

fault-secure detector capability will be proved. Using

some of the smaller EG-LDPC codes, we can tolerate

bit or nanowire defect rates of 10% and fault rates of

10
-18

 upsets/device/cycle, An unified approach is

presented to tolerate permanent defects and transient

faults. This unified approach reduces the area

overhead.

Keywords: Decoder, encoder, fault tolerant,

memory

I. Introduction and Motivation
Nanotechnology provides smaller,faster, and lower

energy devices which allow more powerful and

compact circuitry; however, these benefits come with

a cost—the nanoscale devices may be less reliable.

Thermal and shot-noise estimations [1], [2] alone

suggest that the transient fault rate of an individual

nanoscale device (e.g., transistor or nanowire) may be

orders of magnitude

higher than today‘s devices. As a result, we can expect

combinational logic to be susceptible to transient

faults in addition to storage cells and communication

channels. Therefore, the paradigm of protecting only

memory cells and assuming the surrounding circuitries

(i.e., encoder and decoder) will never introduce

errorsis no longer valid.A mathematical definition of

ECCs which have simple FSD which do not requiring

the addition of further redundancies in order to achieve

the fault-secure property. Identification and proof that

an existing LDPC code (EG-LDPC) has the FSD

prooperty. A detailed ECC encoder, decoder, and

corrector design that can be built out of fault-prone

circuits when protected by this fault-secure detector

also implemented in fault-prone circuits and guarded

with a simple OR gate built out of reliable circuitry .

 To further show the practical availability of

these codes, we work through the engineering design

of a nanoscale memory system based on these

encoders and decoders including the Memory

banking strategies and scrubbing, Reliability analysis,

Unified ECC scheme for both permanent memory bit

defects and transient upsets.

II Fault-Tolerant Computing Using Hybrid

Nano-CMOS Architecture
Architectures based on nanoscale molecular devices

are attracting attention for replacing CMOS

architectures at the end of the semiconductor

roadmap. The two most promising nanotechnologies,

according to ITRS, are silicon nanowires and carbon

nanotubes. Although they offer unmatched densities

for building logic, interconnect and memory, they

suffer from very defect-prone manufacturing

processes. This is further exacerbated by testing

complexities where it is nearly impossible to detect

all defects in a large nanoscale chip. Furthermore, the

small structures in nanoscale architectures are

susceptible to transient faults which can produce

arbitrary soft errors. As a result, fault tolerance is

necessary to make nanoscale architectures practical

and realistic.

We propose an architecture that can tolerate a large

number of undetected manufacturing faults as well as

a large rate of transient faults. Our architecture is

characterized by multiple levels of redundancy and

majority voting to correct errors caused by such

faults. A key aspect of the architecture is that it

contains a judicious balance of both nanoscale and

traditional CMOS components. A companion to the

architecture is a compiler with heuristics tailored to

quickly and compactly map logic onto partially

defective components. Experimental results

demonstrate the efficacy of the architecture. Low-

Density Parity-Check Codes Based on Finite

Geometries. Later,a geometric approach to the

construction of low-density parity-check (LDPC)

codes has were found.Four classes of LDPC codes

Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.comVol. 2, Issue

2,Mar-Apr 2012, pp.292-299

293 | P a g e

are constructed based on the lines and points of

Euclidean and projective geometries over finite fields.

Codes of these four classes have good minimum

distances and their Tanner graphs have girth 6. Finite-

geometry LDPC codes can be decoded in various

ways, ranging from low to high decoding complexity

and from reasonably good to very good performance.

They perform very well with iterative decoding.

Furthermore, they can be put in either cyclic or quasi-

cyclic form. Consequently, their encoding can be

achieved in linear time and implemented with simple

feedback shift registers.

III Coding Scheme:
The technique introduced in this work

exploits the existing structure of the ECC to guarantee

the fault-secure property of the detector unit without

adding redundant computations. We start with ECC

definition for our fault-secure detector capable codes.

its parity-check matrix and generator matrix are the

cyclic shifts of their first rows. The checking or

detecting operation is the following vector-matrix

multiplication.

 S = C×HT

Where, H is an (n−k) ×n Parity-Check matrix. (n − k)-

bit vector S is called syndrome vector.

A syndrome vector is zero if C is a valid

codeword and non-zero if C is an erroneous codeword.

3.1 Creating a parity check matrix:

The parity check matrix for a given code can

be derived from its generator matrix and (vice-versa).

If the generator matrix for an [n, k]-code is in standard

form

 G = [Ik | P]

Then the parity check matrix is given by

 H= [-P
T
 | I

n-k]

Where ‗I‘ is a (n-k) identity matrix.

‗P‘ is a k x (n-k) matrix that generates parity

bits.Because, GH
T

= P − P = 0.

 Like the general parity-prediction technique

[4] concurrently generates (predicts) the parity-bits of

the encoder

outputs (encoded bits) from the encoder inputs

(information bits).For any valid codeword x, Hx = 0.

For any invalid codeword, the syndrome vector S

satisfies. The rows of a parity check matrix are parity

checks on the code words of a code. That is, they show

how linear combinations of certain digits of each

codeword equal zero.

3.2 ECC with Fault Secure Detector:

In this proposed system the encoder is

protected with parity-prediction and parity checker.

The decoder is protected by adding a code checker

(detector) block. If the code checker detects a non-

codeword, then the error in the decoder is detected.

Here we propose a multiple-error fault tolerant

decoder and encoder that are general enough for any

decoder and encoder implementation and for any

kind of ECC that satisfies the restricted ECC

definition. The restricted ECC definition which

guarantees a fault-secure detector capable ECC is as

follows:

Let C be an ECC with minimum distance d.

C is FSD-ECC if it can detect any combination of

overall (d – 1) or fewer errors in the received

codeword and in the detector circuitry.

3.3 LDPC codes:

LDPC codes have several advantages, which

have made them popular in many communication

applications like low density of the encoding

matrix,Easy iterative decoding, generating large code

words that can approach Shannon‘s limit of coding.

An LDPC code is defined as the null space

of a parity check matrix H that has the following

properties like 1. Each row has ρ number of 1‘s and

each column has γ number of 1‘s, the number of 1‘s

that are common between any two columns (λ) is no

greater than 1, i.e., λ = 0 or 1 and both ρ and γ are

small compared to the length of the code and the

number of rows in H.

As both ρ and γ are very small compared to

the code length and the number of rows in the matrix

H, H has a low density of 1‘s. Hence H is said to be a

low density parity check matrix and the code defined

by H is said to be a low-density parity check code.

The density of H (r) is defined to be the ratio of the

total number of 1‘s in H to the total number of entries

in H in this case r = ρ/n = γ/J, where J is the number

of rows in H. This kind of LDPC code is said to be a

(γ, ρ)-regular LDPC code. If the weights of all the

columns or rows in H are not the same, then it is

called an irregular LDPC code.

3.4 Euclidean Geometry LDPC Codes:
 Let EG be a Euclidean Geometry with n points and

j lines. EG is a finite geometry that is shown to have

the following fundamental structural properties:

1) every line consists of points;

2) any two points are connected by exactly one line;

3) every point is intersected by lines;

4) two lines intersect in exactly one point or they are

parallel;

i.e., they do not intersect.

Let H be a j x n binary matrix, whose rows and

columns corresponds to lines and points in an

Euclidean geometry respectively, where hij =1 if and

only if the i
th

 line of EG contains the j
th

 point of EG,

and hij =0 otherwise.

A row in H displays the lines that intersect at a

specific point in EG and has weight ρ . A column in

H displays the lines that intersect at a specific point

Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.comVol. 2, Issue

2,Mar-Apr 2012, pp.292-299

294 | P a g e

in EG and has a specific weight γ . The rows of H are

called the incidence vectors of the lines in EG and the

columns of H are called the intersecting vectors of the

points in EG. Therefore, H is the incidence matrix of

the lines in EG over the points in EG. It is shown in

[3] that H is a LDPC matrix, and therefore the code is

an LDPC code.

Aspecial subclass of EG-LDPC codes, type-I 2-D

EG-LDPC,is considered here. It is shown in [3] that

type-I 2-D EG-LDPC have the following parameters

for any positive integer t > 2:

• Information bits, k=2
2t

 – 3
t

• Length, n =2
2t

 – 1

• Minimum distance, d min =2
t
+1

• Dimensions of the parity-check matrix, n x n

• Row weight of the parity-check matrix, p =2
t

• Column weight of the parity-check matrix, y =2
t

Data bits stay in memory for a number of cycles and,

during this period, each memory bit can be upset by a

transient fault with certain probability. Therefore,

transient errors accumulate in the memory words over

time. In order to avoid accumulation of too many

errors in any memory word that surpasses the code

correction capability, the system must perform

memory scrubbing.

Memory scrubbing is the process of periodically

reading memory words from the memory, correcting

any potential errors, and writing them back into the

memory (e.g., [22]). This feature is shown in the

revised system overview in Fig. 10. To perform the

periodic scrubbing operation, the normal memory

access operation is stopped and the memory performs

the scrub operation.

 The information bits are fed into the

encoder to encode the information vector, and the

fault secure detector of the encoder verifies the

validity of the encoded vector. If the detector detects

any error, the encoding operation must be redone to

generate the correct codeword. The codeword is then

stored in the memory. During memory access

operation, the stored codeword‘s will be accessed

from the memory unit. Codeword‘s are susceptible to

transient faults while they are stored in the memory;

therefore a corrector unit is designed to correct

potential errors in the retrieved codeword‘s.

In our design all the memory words pass

through the corrector and any potential error in the

memory words will be corrected. Similar to the

encoder unit, a fault-secure detector monitors the

operation of the corrector unit. All the units shown in

figure are implemented in fault-prone, nanoscale

circuitry; the only component which must be

implemented in reliable circuitry are two OR gates

 Fig 3.1 Fault tolerant memory architecture, with pipeline corrector

that accumulate the syndrome bits for the detectors.

Data bits stay in memory for a number of cycles and,

during this period, each memory bit can be upset by a

transient fault with certain probability. Therefore,

transient errors accumulate in the memory words over

time.

3.5 Encoder

The encoder structure of a systematic code

calculates the parity function of each parity bit based

on the information bits. Each parity function is a xor

gate similar to the detector. Therefore the encoder

circuitry consists of (n − k) xor gates. An n -bit

codeword c, which encodes a k-bit information vector

i is generated by multiplying the k-bit information

vector with a kxn bit generator matrix G; i.e., c=i.G.

EG-LDPC codes are not systematic and the

information bits must be decoded from the encoded

vector, which is not desirable for our fault-tolerant

approach due to the further complication and delay

that it adds to the operation. However, these codes

are cyclic codes. We convert the cyclic generator

matrices to systematic generator matrices for all the

EG-LDPC codes under consideration.

 The code under consideration is a (15, 7, 5) EG-

LDPC code. We used this code as an example to

concretely illustrate the concept of the fault secure

encoder, decoder, and checker; and the

implementation of these units. We used the procedure

Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.comVol. 2, Issue

2,Mar-Apr 2012, pp.292-299

295 | P a g e

presented in [3] and [5] to convert the cyclic generator

matrices to systematic generator matrices for all the

EG-LDPC codes under consideration. The (15, 7, 5)

EG-LDPC code has the generator polynomial

l+x
4
+x

6
+x

7
+x

8 ….
(1)

This generator polynomial will result in the

generator matrix, shown in Figure 4.2(a) below. We

perform linear row operations to make this cyclic non-

systematic generator matrix into systematic form. We

perform the following operations:

 i0=i0+i4+i6 (2)

 i1 = i1 + i5 …. (3)

 i2=i2+i6 …. (4)

This systematic form is presented in Figure

3.2. This is the correct representation of this

systematic format.Based on this new generator matrix

encoder shown in Figure 3.3

Fig 3.2 The generator matrix of (15, 7, 5) EG-

LDPC code in cyclic format

 Fig 3.3 The generator matrix of (15, 7, 5) EG-

LDPC codes in systematic format

 Fig 3. 4 Systematic encoder circuit of

(15, 7, 5) EG-LDPC codes

3.6 Fault Secure Detector

The core of the detector operation is to

generate the syndrome vector, which is basically

implementing the following vector-matrix

multiplication on the received encoded vector c and

parity-check matrix H: s = c×H^T, and therefore each

bit of the syndrome vector is the product of the

following vector-vector multiply: si = c · hi^ T ,

where hi^T is the transposed of the ith row of the

parity-check matrix. The above product is a linear

binary sum over digits of c where the corresponding

digit in hi is 1. This binary sum is implemented with

a xor gate. Since the row weight of the parity-check

matrix is p, to generate one digit of the syndrome

vector we need a p-input xor gate, or (p− 1) 2-input

xor gates in a tree structure. For the whole detector, it

takes n(p − 1)2-input xor gates. An error is detected if

any of the syndrome bits has a nonzero value.

 Fig 3.5: Fault-secure detector for (15, 7, 5) EG-

LDPC code

The final error detection signal is

implemented by an OR function of all the syndrome

bits. The output of this n-input or gate is the error

detector signal. In order to avoid a single point of

failure, we must implement the OR gate in a reliable

substrate i.e., we use a litho graphic scale wired-or.

This n-input wired-or is much smaller than

implementing the entire n (p − 1) 2-input XOR at the

lithographic scale.

IV Memory
A method for operating a memory cell array,

the method comprising assigning word lines of a

memory cell array as addresses for writing sets of

data thereto from a cache memory, and scrambling

addresses of the sets of data by writing a first chunk

of the particular set of data from the cache memory to

a first word line of the array, and writing a second

chunk of the particular set of data from the cache

memory to a second word line of the array, the first

chunk comprising a first subset of the particular set of

data and the second chunk comprising a second

subset of the particular set of data.

Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.comVol. 2, Issue

2,Mar-Apr 2012, pp.292-299

296 | P a g e

 Fig 4.1: Memory block diagram

4.4.1 Nano-Memory Architecture Model:

Here Nano-Memory and NanoPLA

architectures to implement the memory core and the

supporting logic, respectively. Nano-Memory and

Nano PLA are based on nanowire crossbars. The

Nano-Memory number of cycles and, during this

period, each memory bit can be upset by a transient

fault with certain probability. Therefore, transient

errors accumulate in the memory words over time. In

order to avoid accumulation of too many errors in any

memory word that surpasses the code correction

capability, the system must perform memory

scrubbing. Memory scrubbing is the process of

periodically reading memory words from the memory,

correcting any potential errors, and writing them back

into the memory. Architecture developed in can

achieve greater than 10
11

 b/cm
2
 density even after

including the lithographic-scale address wires and

defects.

This design uses a nanowire crossbar to store

memory bits and a limited number of lithographic

scale wires for address and control lines. Fig. 3 shows

a schematic overview of this memory structure. The

fine crossbar shown in the centre of the picture stores

one memory bit in each crossbar junction. To be able

to write the value of each bit into a junction, the two

nanowires crossing that junction must be uniquely

selected and an adequate voltage must be applied to

them. The nanowires can be uniquely selected through

the two address decoders located on the two sides of

the memory core.

 Fig 4.2 Structure of NanoMemory core

4.1 Corrector
One-step majority-logic correction is a fast

and relatively compact error-correcting technique.

There is a limited class of ECCs that are one-step-

majority correctable which include type-I two-

dimensional EG-LDPC.

4.2 One-Step Majority-Logic Corrector:

One-step majority logic correction is the

procedure that identifies the correct value of a each

bit in the codeword directly from the received

codeword; this is in contrast to the general message-

passing error correction strategy which may demand

multiple iterations of error diagnosis and trial

correction. Avoiding iteration makes the correction

latency both small and deterministic. This technique

can be implemented serially to provide a compact

implementation or in parallel to minimize correction

latency.

This method consists of two parts: 1)

generating a specific set of linear sums of the

received vector bits and 2) finding the majority value

of the computed linear sums. The majority value

indicates the correctness of the code-bit under

consideration; if the majority value is 1, the bit is

inverted, otherwise it is kept unchanged. The circuit

implementing a serial one-step majority logic

corrector for (15, 7, 5) EG-LDPC code is shown in

Fig.4.3.

Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.comVol. 2, Issue

2,Mar-Apr 2012, pp.292-299

297 | P a g e

Fig 4.3 Serial one-step majority logic corrector

structure to correct last bit (bit 14th) of 15-bit (15,

7, 5) EG-LDPC code.

V Circuit Implementation
Here majority circuit implementation gate use

Sorting Networks the majority gate has application in

many other error-correcting codes, and this compact

implementation can improve many other applications.

We use binary Sorting Networks to do the sort

operation of the second step efficiently. An -input

sorting network is the Structure that sorts a set of n

bits, using 2-bit sorter building blocks. Fig.5.1 shows a

4-input sorting network. Each of the vertical lines

represents one comparator which compares two bits

and assigns the larger one to the top output and the

smaller one to the bottom [see Fig.5.1 (b)]. The four-

input sorting network, has five comparator blocks,

where each block consists of two two-input gates;

overall the four-input sorting network consists of ten

two-input gates in total.

 Fig

5.1 Four-input sorting network; (a) each vertical

line shows a one-input comparator. (b) One

comparator structure

5.1 Serial Corrector:

As mentioned earlier, the same one-step

majority-logic corrector can be used to correct all the n

bits of the received codeword of a cyclic code. To

correct each code-bit, the received encoded vector is

cyclic shifted and fed into to the XOR gates as shown

in Fig 4.5.1. The serial majority corrector takes cycles

to correct an erroneous codeword. If the fault rate is

low, the corrector block is used infrequently; since the

common case is error-free codewords, the latency of

the corrector will not have a severe impact on the

average memory read latency. The serial corrector

must be placed off the normal memory read path.The

memory words retrieved from the memory unit are

checked by detector unit. If the detector detects an

error, the memory word is sent to the corrector unit to

be corrected, which has the latency of the detector

plus the round latency of the corrector.

 Fig 5.2 Partial system overview with serial

corrector

5.2 Parallel Corrector:

 For high error rates, the corrector is used

more frequently and its latency can impact the system

performance. Therefore we can implement a parallel

one-step majority corrector which is essentially

copies of the single one-step majority-logic corrector.

All the memory words are pipelined through the

parallel corrector. This way the corrected memory

words are generated every cycle. The detector in the

parallel case monitors the operation of the corrector,

if the output of the corrector is erroneous; the

detector signals the corrector to repeat the operation.

Note that faults detected in a nominally corrected

memory word arise solely from faults in the detector

and corrector circuitry and not from faults in the

memory word. Since detector and corrector circuitry

are relatively small compared to the memory system,

the failure rate of these units is relatively low.

However, when the detector observers an

error, the memory word must pass through the

corrector to be corrected. The total number of cycles

that will be lost is equal to the latency of the corrector

and the detector for our serial corrector design, the

main latency is due to the corrector. For larger codes,

where the serialized corrector can take a long time,

multiple copies of the corrector can be used to reduce

the throughput loss. Longer scrubbing intervals

increase the number of errors accumulated in the

memory and therefore more retrieved memory words

have to go through the correction operation.

5.3 FPGA:

A Field-programmable Gate Array (FPGA)

is an integrated circuit designed to be configured by

the customer or designer after manufacturing—hence

"field-programmable".

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable

Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.comVol. 2, Issue

2,Mar-Apr 2012, pp.292-299

298 | P a g e

The FPGA configuration is generally

specified using a hardware description

language (HDL), similar to that used for

an application-specific integrated circuit (ASIC).

FPGAs can be used to implement any logical function

that an ASIC could perform. The ability to update the

functionality after shipping is the partial re-

configuration of the portion of the design and the low

non-recurring engineering costs relative to an ASIC

design, offer advantages for many

applications.

 Fig 5.3 Common FPGA Architecture

The Spartan®-3E family of Field-

Programmable Gate Arrays (FPGAs) is specifically

designed to meet the needs of high volume, cost-

sensitive consumer electronic applications. The five-

member family offers densities ranging from 100,000

to 1.6 million system gates.

These Spartan-3E FPGA enhancements,

combined with advanced 90 nm process technology,

deliver more functionality and bandwidth per dollar

than was previously possible, setting new standards in

the programmable logic industry.

VI Theoretical Calculations
After successfully compiling an FPGA design

using the Xilinx development software, the design can

be downloaded using the iMPACT programming

software and the USB cable.

The information bits are fed into the encoder

to encode the information vector, and the fault secure

detector of the encoder verifies the validity of the

encoded vector.7-bit information vector is applied to

encoder module as shown below:

Input message vector = i0 i1 i2 i3 i4 i5 i6

 = 000 0010

The encoded vector consists of information bits

followed by parity bits.

Codeword = [C0 C1 …. C14]

C = [I : P];

I = Message Part;

P= Parity Part; P = [P0, P1, P2, P3, P4, P5, P6, P7]

P0= i0 xor i1 xor i3 =0 + 0 + 0 =0;

P1= i1 xor i2 xor i4 = 0 +0+0 = 0;

P2= i2 xor i3 xor i5 = 0 +0+1 = 1;

P3= i3 xor i4 xor i6 = 0 +0+0 = 0;

P4= i0 xor i1 xor i3 xor i4 xor i5 = 0 +0+0+0+1 = 1;

P5= i1 xor i2 xor i4 xor i5 xor i6 = 0+0 +0+1+0 = 1;

P6= i0 xor i1 xor i2 xor i5 xor

i6 = 0+0+0+1+0 = 1;

P7= i0 xor i2 xor i6 = 0 +0+0 = 0;

 Code word = (000 0010 0010 1110)

The checking or detecting operation is the following

vector-matrix multiplication

 S = C×H
T

Syndrome vector is zero if c is a valid codeword and

non-zero if c is an erroneous codeword.

S = 0000 0000

Hence received codeword is valid code word.

Original Codeword = (000 0010 0010 1110)

 For 1
st
 cycle, Error Codeword = (000 0011 0010

1111),

 1
st
 xor gate inputs: 0111,Output: 1

 2
nd

 xor gate inputs: 0111,Output:1

 3
rd

 xor gate inputs: 0011, Output:0

 4
th

 xor gate inputs: 0001,Output:1

Majority gate inputs are: 1101, for this condition

majority gate output = 1

Majority gate value = 1 then invert the bit present in

14
th

 position

Majority gate value = 0 then bit position is

unchanged. After 15 th cycle, Codeword: (000 0010

0010 1110) i.e. Correct Codeword.

VII Conclusion
In this paper, fault-tolerant memory system is

presented and it is capable of tolerating errors not

only in the memory bits but also in the supporting

logic including the ECC encoder and corrector using

Euclidean Geometry low density parity check (EG-

LDPC) codes. These codes have the fault-secure

detector capability (FSD). Using these FSDs, a fault-

tolerant encoder and corrector is designed, where the

fault-secure detector monitors their operation. An

unified approach is presented to tolerate permanent

defects and transient faults. This unified approach

reduces the area overhead. Without this technique to

tolerate errors in the ECC logic, reliable encoders and

decoders are required.

References
[1] M. Forshaw, R. Stadler, D. Crawley, and K.

Nikolic´, ―A short review of nanoelectronic

http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Partial_re-configuration
http://en.wikipedia.org/wiki/Partial_re-configuration

Lavanya Thunuguntla, Bindu Madhavi K, Ramesh Kumar Reddy C / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.comVol. 2, Issue

2,Mar-Apr 2012, pp.292-299

299 | P a g e

architectures,‖ Nanotechnology, vol. 15, pp.

S220–S223, 2004.

[2] J. Kim and L. Kish, ―Error rate in current-

controlled logic processors with shot noise,‖

Fluctuation Noise Lett., vol. 4, no. 1, pp. 83–86,

2004.

[3] S. Lin and D. J. Costello, Error Control Coding,

2nd ed. Englewood Cliffs, NJ: Prentice-Hall,

2004.

[4] S. J. Piestrak, A. Dandache, and F. Monteiro,

―Designing fault-secure parallel encoders for

systematic linear error correcting codes,‖ IEEE

Trans. Reliab., vol. 52, no. 4, pp. 492–500, Jul.

2003.

[5] R. J. McEliece, The Theory of Information and

Coding. Cambridge, U.K.: Cambridge University

Press, 2002.

Authors

 Ms Lavanya Thunuguntla has 6

years of Teaching experience and presently working as

an Associate Professor in the Department of ECE in

Hyderabad Institute of Technology and Management

(HITAM), Hyderabad, AP(India).She received her

B.Sc degree in Computer Science from Acharya

Nagarjuna University in 2002, M.Sc degree in Physics

from University of Hyderabad, Hyderabad in 2004 and

M.Tech from Indian Institute of Technology (IIT)

Kharagpur in 2007. She has Professional Membership

in IEEE. She has various journal publications in

International journals in the field of Nano Technology

etc. She has guided several M.Tech and B.Tech

projects. She has strong motivation towards research

in the fields of Nano Technology, Microwave and

Optical & Analog Communications ,VLSI system

design etc.

Mrs Bindu Madhavi K

has 7 years of Teaching experience and presently

working as an Assistant Professor in the Department

of ECE in Hyderabad Institute of Technology and

Management (HITAM), Hyderabad, AP(India).She

received her B.Tech degree in ECE from JNTU in

2003, M.Tech in VLSI System Design from JNTU

,Hyderabad. She has guided

 several M.Tech and B.Tech projects.Her

areas of interests are VLSI System Design and

Communication Systems.

 Mr Ramesh Kumar Reddy

C, doing his M.Tech II Year in VLSI System design

in Hyderabad Institute of Technology and

Management. His area of interest is VLSI & System

Design

