
Y.Ramesh, T. Naresh, T. Chalapathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 1,Jan-Feb 2012, pp.1150-1156

1150 | P a g e

Breakdown the Session Riding Attacks (XSRF) with

Cryptographic NONCE

Y.Ramesh*, T. Naresh**, T. Chalapathi***

*(Assoc. Prof., CSE Department)

**(Asst. Prof., CSE Department)

***(Asst. Prof., CSE Department)

(Aditya Institute of Technology And Management,Tekkali-532201, A.P.)

Session Riding(XSRF)[1] is an attack outlined in

the OWASP [2]Top 10 whereby a malicious

website will send a request to a web application

that a user is already authenticated against from a

different website. This way an attacker can access

functionality in a target web application via the

victim's already authenticated browser. Targets

include web applications like social media, in

browser email clients, online banking, and web

interfaces for network devices. We propose

Browser-Enforced Cryptographic Nonces, a

browser-based mechanism to defend against

Session Riding (XSRF) attacks and infers whether

a request reflects the user's intention and whether

an Cryptographic Nonce is sensitive, and strips

sensitive authentication tokens from any request

that may not reflect the user's intention.

Keywords: web security, browser security, web

server security

Abbreviations: OWASP- Open Web Application

Security Project, XSRF- cross site request forgery

I. Introduction

A few years ago, Cross Site Request Forgery was not

taken as a serious bug. It wasn’t even taken as bug at

all. But today, web is about lots of money and many

non-IT users manage important websites and that’s

why this kind of bug is very popular these days. An

important condition for a successful attack is that a

user must click the attacker’s link.

A browser typically uses two ways of requesting web

applications – sending data via URL parameters

where HTTP GET request is used, and sending data

via forms where HTTP POST is used. The

application typically does some action – inserts a new

user into a table, deletes a forum post, etc. Nothing

strange? Yes, but … but there is one problem – the

web application typically doesn’t check if requests

are generated by the web application itself (= user

clicks a link or sends a filled form). Still seems okay?

Let’s continue. What if the attacker creates a link for

some action and sends it to the user? The user clicks

the link and the action is performed without the user

even noticing. And this is called Cross Site Request

Forgery.

We already know that users have to click on the

attacker’s link or fill their form. Another condition is

that the user must be logged on to the vulnerable

web, but these days, almost every application

provides the ―keep me logged in‖ functionality.

ASP.NET complicates a successful attack because of

ViewState. If ViewState is turned on, you cannot

send tampered POST requests to an ASP.NET

application because validation of ViewState fails. So,

many developers think that an ASP.NET application

is bulletproof against XSRF. But there are always a

few catches:

 GET requests can still cause XSRF.

 ViewState can be generated outside an

application if you are not use machine keys as keys

for ViewState encoding.

 Even if you are using machine keys to

encrypt your ViewState, you are not 100% safe.

ASP.NET doesn’t take form values from

Request.Form but from Request.Params. This is the

reason why it is possible to perform something called

a ―One click attack‖. It is a special case of XSRF.

You simply send ViewState and values of form fields

via GET. The trick is that you can use ViewState

generated by ASP.NET after post, change values of

fields and validation still succeeds.

figure-1 shows what happens when a user visits a

website figure-2 shows what Here’s what happens in

a XSRF attack

Y.Ramesh, T. Naresh, T. Chalapathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 1,Jan-Feb 2012, pp.1150-1156

1151 | P a g e

Fig:1 user visiting website

Fig:2 Launching XSRF attack

Y.Ramesh, T. Naresh, T. Chalapathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 1,Jan-Feb 2012, pp.1150-1156

1152 | P a g e

1.1 Example of Session Riding

Example shows a Session Riding also called as one-

click attack. Let’s have a simple page with a textbox

and a button. The code below handles the Onclick

action of the button: the figure 3 & 4

Shows the implementation of On click action of the

Button

Figure 3 :user interface of On click Button

Figure 4: result of On click Button

protected void btnSend_Click(object sender,

EventArgs e)

{

Response.Write(txtUserID.Text);

}

Users typically insert a value into the txtUserID

textbox and click the button. But the attacker can

forge a link similar to this one to the user:

http://localhost:1326/WebSite2/default.aspx?__VIE

WSTATE=%2FwEPDwUKMTkwNjc4NTIwMWRk

BqEaTzfhaAEOn00zsI7zRz%2Fohdk%3D&txtUserI

D=this+is+naresh&Button1=show&__EVENTVALI

DATION=%2FwEWAwKD%2FtmSAwLT8dy8BQ

KM54rGBl9krlLYLC%2B828tJxnX3AWyeazou

http://localhost:1326/WebSite2/default.aspx?__VIEWSTATE=%2FwEPDwUKMTkwNjc4NTIwMWRkBqEaTzfhaAEOn00zsI7zRz%2Fohdk%3D&txtUserID=this+is+naresh&Button1=show&__EVENTVALIDATION=%2FwEWAwKD%2FtmSAwLT8dy8BQKM54rGBl9krlLYLC%2B828tJxnX3AWyeazou
http://localhost:1326/WebSite2/default.aspx?__VIEWSTATE=%2FwEPDwUKMTkwNjc4NTIwMWRkBqEaTzfhaAEOn00zsI7zRz%2Fohdk%3D&txtUserID=this+is+naresh&Button1=show&__EVENTVALIDATION=%2FwEWAwKD%2FtmSAwLT8dy8BQKM54rGBl9krlLYLC%2B828tJxnX3AWyeazou
http://localhost:1326/WebSite2/default.aspx?__VIEWSTATE=%2FwEPDwUKMTkwNjc4NTIwMWRkBqEaTzfhaAEOn00zsI7zRz%2Fohdk%3D&txtUserID=this+is+naresh&Button1=show&__EVENTVALIDATION=%2FwEWAwKD%2FtmSAwLT8dy8BQKM54rGBl9krlLYLC%2B828tJxnX3AWyeazou
http://localhost:1326/WebSite2/default.aspx?__VIEWSTATE=%2FwEPDwUKMTkwNjc4NTIwMWRkBqEaTzfhaAEOn00zsI7zRz%2Fohdk%3D&txtUserID=this+is+naresh&Button1=show&__EVENTVALIDATION=%2FwEWAwKD%2FtmSAwLT8dy8BQKM54rGBl9krlLYLC%2B828tJxnX3AWyeazou
http://localhost:1326/WebSite2/default.aspx?__VIEWSTATE=%2FwEPDwUKMTkwNjc4NTIwMWRkBqEaTzfhaAEOn00zsI7zRz%2Fohdk%3D&txtUserID=this+is+naresh&Button1=show&__EVENTVALIDATION=%2FwEWAwKD%2FtmSAwLT8dy8BQKM54rGBl9krlLYLC%2B828tJxnX3AWyeazou
http://localhost:1326/WebSite2/default.aspx?__VIEWSTATE=%2FwEPDwUKMTkwNjc4NTIwMWRkBqEaTzfhaAEOn00zsI7zRz%2Fohdk%3D&txtUserID=this+is+naresh&Button1=show&__EVENTVALIDATION=%2FwEWAwKD%2FtmSAwLT8dy8BQKM54rGBl9krlLYLC%2B828tJxnX3AWyeazou

Y.Ramesh, T. Naresh, T. Chalapathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 1,Jan-Feb 2012, pp.1150-1156

1153 | P a g e

<%@ Page Language="C#"

AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <div>

<asp:TextBox ID="txtUserID" runat="server"

Width="300px"></asp:TextBox>

 <asp:Button ID="Button1" runat="server"

OnClick="Button1_Click" Text="show"

Width="157px" /></div>

 </form>

</body>

</html>

The <anything> macro can be changed to anything

else by the attacker. ViewState is taken from the page

that can be generated after postback on that page.

Validation is successful.

let’s say I happen to visit hakersite.com. It just so

happens that this site is trying to attack people who

bank with mybank.com and have setup a XSRF attack

on their site. The attack will transfer $5000.00 to

their account, which is account number 990099009.

Somewhere on hakersite.com attackers have added

this line of code:

<iframe

src="http://mybank.com/app/transferFunds?amount

=5000&destinationAccount=990099009" >

Upon loading that iframe, my browser will send that

request to mybank.com which my browser has

already logged in as me. The request will be

processed and send $5000.00 to account 990099009

the attack consists in submitting a malicious HTTP

form to a page that expects a form. Reasonably, this

page will be consuming posted data to perform some

sensitive operation. Reasonably, the attacker knows

exactly how each field will be used and can come up

with some spoofed values to reach his goal. It's

usually a targeted attack, and it is also hard to track

back because of the triangular trade that it

establishes—the hacker induces a victim to click a

link on the hacker's site, which in turn will post the

bad code to a third site.

1.2 What Can Be Done by Session Riding

It depends on how badly an application is written. If

it is very bad and the administrator of the web

doesn’t take care of the server properly (for example,

encoding of ViewState based on machine key being

turned off), then the attacker can do anything that the

victim of the attack could normally do.

Characteristics are common to XSRF:

 Involve sites that rely on a user's identity

 Exploit the site's trust in that identity

 Trick the user's browser into sending HTTP

requests to a target site

 Involve HTTP requests that have side effects

1.3 How to find Session Riding Bug

If you find any page/control/etc that does an action

on GET request, there is a possibility of a XSRF bug.

For example, try to find the following strings in your

source code:

 QueryHelper.GetString("action")

Try some other similar strings. You can also search

for strings:

 EnableViewState=‖false‖

 EnableViewStateMac=‖false‖

If you find these strings in the <%@ page directive,

it means that a developer turned off ViewState

validation (first case) or machine keys for ViewState

encoding (second case). You already know that

ViewState validation helps a lot to avoid POST

XSRF.

II. Literature Survey
vulnerabilities have been known and in some cases

exploited since 2001.[2] Because it is carried out

from the user's IP address, some website logs might

not have evidence of Session Riding.[3]Exploits are

under-reported, at least publicly, and as of 2007[4]

there are few well-documented examples. About 18

<form id="form1" runat="server" method="get">

http://en.wikipedia.org/wiki/HTTP

Y.Ramesh, T. Naresh, T. Chalapathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 1,Jan-Feb 2012, pp.1150-1156

1154 | P a g e

million users of eBay's Internet Auction Co. at

Auction.co.kr in Korea lost personal information in

February 2008. Customers of a bank in Mexico were

attacked in early 2008 with an image tag in email.

The link in the image tag changed the DNS entry for

the bank in their ADSL router to point to a malicious

website, impersonating the bank.[5]

2.1 Real-world XSRF vulnerabilities

In order to understand how commonly the XSRF

vulnerability exists in the real-world web

applications, one of the authors of the paper

examined about a dozen web sites for which he has

an account and usually visits. As a result, we found

four of them are vulnerable to XSRF attacks as

shown in following Table . We veri¯ed all the

attacks with Firefox 2.0.

Vulnerable web site

Targeted sensitive

operation

A university credit union

site

Money transfer between

accounts;

adding a new account

A university web mail

Deleting all emails in

the Inbox

An online forum for

HTML development

Posting a message;

updating user profile

Department portal site

Editing biography

information

Table 1. The XSRF vulnerabilities discovered in real

world websites.

2.2 Session Riding (XSRF) VS cross-site scripting

(XSS)

Cross-site request forgery, also known as a one-

click attack or session riding and abbreviated as

XSRF, is a type of malicious exploit of a website

whereby unauthorized commands are transmitted

from a user that the website trusts.[6]Unlike cross-

site scripting (XSS)[7], which exploits the trust a user

has for a particular site, XSRF exploits the trust that a

site has in a user's browser. XSRF vulnerabilities

should not be confused with XSS vulnerabilities. In

XSS exploits, an attacker injects malicious scripts

into an HTML document hosted by the victim web

site, typically through submitting text embedded with

code which is to be displayed on the page, such as a

blog post. Most XSS attacks are due to vulnerabilities

in web applications which fail in sanitizing

untrustworthy inputs which might in turn be

displayed to users. XSRF attacks do not rely on the

execution and injection of malicious JavaScript code.

XSRF vulnerabilities are due to the use of cookies or

HTTP authentication as the authentication

mechanism. A web site that does not have XSS

vulnerabilities may contain XSRF vulnerabilities.

2.3 Existing XSRF Defenses

Web sites have various XSRF countermeasures

available:

 Requiring a secret, user-specific token in all

form submissions and side-effect URLs

prevents XSRF; the attacker's site cannot put

the right token in its submissions[1]

 Requiring the client to provide authentication

data in the same HTTP Request used to perform

any operation with security implications

(money transfer, etc.)

 Limiting the lifetime of session cookies

 Checking the HTTP Referer header

 Ensuring that there is no clientaccesspolicy.xml

file granting unintended access to Silverlight

controls[8]

 Ensuring that there is no crossdomain.xml file

granting unintended access to Flash movies[9]

 Verifying that the request's header contains a X-

Requested-With. Used by Ruby on Rails

(before v2.0) and Django (before v1.2.5). This

protection has been proven unsecure[10] under

a combination of browser plugins and redirects

which can allow an attacker to provide custom

HTTP headers on a request to any website,

hence allow a forged request.

III. Browser Enforced Cryptographic

NONCE (BECN)

Now that we’ve run through some common non-

working solutions to XSRF vulnerabilities, we’ll

discuss some solutions that work. All of them are

effective enough to reduce the XSRF threat to a

negligible concern, but all have costs. Some are

easier to implement than others, some incur heavy

burdens on users, and some are more secure than

others. Which one is right for you depends on your

application and the circumstances of your

development cycle and user base.

What is a “nonce”?

http://en.wikipedia.org/wiki/Django_(Web_framework)

Y.Ramesh, T. Naresh, T. Chalapathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 1,Jan-Feb 2012, pp.1150-1156

1155 | P a g e

Many of these solutions involve the use of a nonce.

―Nonce‖ is a shortened form of ―cryptographic

number used only once,‖ a one-time token used in a

transaction[5]. The requirements for a nonce used for

XSRF protection are significantly lower than one

used for cryptography. Attackers will be limited in

the number of requests that they can cause their

victim to send, so the nonce only needs to be

somewhat difficult to predict. While there is no

reason not to use a high-quality random number, such

as 128 bits of cryptographically random data, or a

GUID, it is acceptable to simply use a hash of two or

more non-cryptographically random numbers and a

static secret.

3.1 Single per-page nonce

The simplest method of XSRF protection to

implement is to insert a nonce into each form and

also into a special slot in the server session, and then

to compare the values of these two variables when

the form is submitted. Here is a pseudo-code

example:

<%

nonce = generate_nonce()

session.nonce = nonce

%>

<form>

<input name=‖field1‖>

<input name=‖field2‖>

<input type=‖submit‖>

<input name=‖nonce‖ type=‖hidden‖ value=‖<%=

nonce %>‖>

</form>

When the form is submitted, the following is

executed:

if (post.nonce != session.nonce) {

log_XSRF_attack()

error_and_exit()

}

// normal form handling here

What this code does is verify that each request to

process a request has been preceded by a request for

the associated form. In other words, for each form

submission, the form has actually been loaded. Since,

due to the DOM security model, the attacker cannot

read data from another site, the attacker cannot load

the form and read the nonce value. Although this

approach provides excellent protection against

XSRF, it is not without problems. The problems with

this approach lie in the realm of breaking expected

web behavior, rather than in security.

3.2 Per-session nonce

To overcome the usability weaknesses of the section

3.1, a per-session token can be used. In this case, a

single token is created at the beginning of the session

and is used throughout the session. In this pseudo-

code example, the following would be in some global

application file:

<%

function session_initiate(first_name, last_name /* etc

*/) {

session.fisrt_name = first_name

session.last_name = last_name

/* etc */

session.form_token = generate_form_token()

}

%>

Then, in the page code:

<%

<form>

<input name=‖field1‖>

<input name=‖field2‖>

<input type=‖submit‖>

<input name=‖form_token‖ type=‖hidden‖

value=‖<%= session.form_token %>‖>

</form>

When the form is submitted, the following is

executed:

if (post.form_token != session.form_token) {

log_XSRF_attack()

error_and_exit()

}

// normal form handling here

The primary advantage of this method is that multiple

browser windows, page caching, and other functions

will not cause false positives in XSRF detection.

However, it is a rather fragile solution. Since the

form token has a long lifespan, it must be protected

from leakage. If an attacker were to be able to

recover the target’s form token, they would be able to

issue valid requests so long as the target’s session

was active.

Token Security
Fortunately, the techniques that must be used to

protect the token are well understood and are

part of longstanding secure web development

practices. The token must be secure in transport;

communications should be protected via SSL[10],

Conclusion
awareness of XSRF has greatly increased, and many

libraries7 are available to help developers protect

their websites. However, the overwhelming majority

Y.Ramesh, T. Naresh, T. Chalapathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 1,Jan-Feb 2012, pp.1150-1156

1156 | P a g e

of sites on the Internet remain completely vulnerable.

It is my hope that this paper will help in raising

awareness of the issue and the available

countermeasures.

Referneces
[1] Shiflett, Chris (December 13, 2004). "Security

Corner: Cross-Site Request Forgeries".

php|architect (via shiflett.org).

http://shiflett.org/articles/cross-site-request-

forgeries. Retrieved 2008-07-03.

[2] Burns, Jesse (2005). "Cross Site Request

Forgery: An Introduction To A Common Web

Weakness". Information Security Partners, LLC.

http://www.isecpartners.com/files/XSRF_Paper_

0.pdf. Retrieved 2011-10-0

[3] Ristic, Ivan (2005). Apache Security. O'Reilly

Media. p. 280. ISBN 0-596-00724-8.

[4] Christey, Steve and Martin, Robert A. (May 22,

2007). "Vulnerability Type Distributions in CVE

(version 1.1)". MITRE Corporation.

http://cwe.mitre.org/documents/vuln-

trends/index.html. Retrieved 2008-06-07

[5] "List of incidents for which Attack Method is

Cross Site Request Forgery (XSRF)". Web

Application Security Consortium. February

2008.

http://www.webappsec.org/projects/whid/byclass

_class_attack_method_value_cross_site_request

forgery(XSRF).shtml. Retrieved 2008-07-04.

[6] Ristic, Ivan (2005). Apache Security. O'Reilly

 Media. p. 280. ISBN 0-596-00724-8.

[7] SWAP: Mitigating XSS Attacks using a Reverse

Proxy,Peter Wurzinger, Christian Platzer,

Christian Ludl, Engin Kirda, and Christopher

Kruegel

[8]

http://msdn.microsoft.com/ens/library/cc197955.

aspx,Client access policy file to allow cross-

domain access by Silverlight ,

controls,http://msdn.microsoft.com/en-

us/library/cc197955.aspx

[9]http://www.adobe.com/devnet/flashplayer/articles/

cross_domain_policy.html,Cross-domain policy

file usage recommendations for Flash Player,

[10] The SSL Protocol: Version 3.0 Netscape's final

SSL 3.0 draft (November 18, 1996)

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-596-00724-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-596-00724-8

