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Signal Flow Graph Analysis of Linearized Fuzzy PI Controller 
 

 

 

ABSTRACT: A systematic procedure for developing 

the signal flow graph model of a linearized fuzzy PI 
controller is presented in this paper. This proposed 
method provides ease of model formulation and 
avoids the mathematical complexity involved in 
obtaining the linearized model from a non-linear 
model. As a first step in constructing the signal flow 
graph, the analytical structures of fuzzy PI controller 
are needed. In view of this triangular/trapezoidal 
membership functions for inputs variables, singleton 
or triangular/trapezoidal membership functions are 
considered for output variables, Zadeh fuzzy logic 
AND operator, Lukasiewicz fuzzy logic OR operation 
and centroid defuzzifier are considered. A fuzzy PI 
controller is represented as a non-linear PI controller 
which is linearized around an operating point using 
perturbation method. For the linearized fuzzy PI 
controller signal flow graphs are developed.  
 
1. Introduction:  
Fuzzy controllers are important primarily because it 
provides insightful information about what a fuzzy 
controller is how it works, and how it relates to and 
differs from a classical controller. Given the 
dominance of conventional PI control in industrial 
control, it is significant both in theory and in practice 
if a controller can be found that is capable of 
outperforming the PI controller with comparable 
ease of use. We begin our study with an analytical 
structure of some simplest PI fuzzy controllers and 
reveal their connections with PI control and variable 
gain control. Compared with other more complex 
fuzzy controllers, these simplest fuzzy controllers 
have fewer design parameters and hence are more 
practically useful.  

“Analytical structure” we mean the 
mathematical expression of a fuzzy controller that 
represents precisely the fuzzy controller without any 
approximation. Note that this is never an issue for 
conventional control because the analytical 
structure of a conventional controller, linear or 
nonlinear, is always readily available for analysis and 
design. Thus the design goal is to design the 
controller structure and Parameters on the basis of 

the given system model so that resulting control 
system performance will meet user’s performance 
specifications. For fuzzy control, in addition to this 
usual requirement, there exist few more major 
difficulties pertinent only to fuzzy control and 
irrelevant to conventional control. One of them is 
that the input-output structure of a fuzzy controller 
is usually mathematically unavailable after the 
controller is constructed; most fuzzy controllers are 
constructed via so called intelligent system 
approaches as opposed to the mathematical 
approaches exclusively used in conventional 
controller. The fuzzy controller have been treated 
and used as black-box controllers without the 
analytical structure information, precise and 
effective mathematical analysis and design are very 
difficult to achieve.  

Hence the foremost issue is revealing the 
analytical structure is sensible in the context of 
conventional control theory. This is to say that 
merely deriving the structure is not useful enough 
and the structure must be represented in a form 
clearly understandable from control theory stand 
point. Once the structure is well understood, 
analytical issues can be explored using the well 
developed conventional control theory. Theoretical 
analysis coupled with signal flow graph depiction 
involving various system models demonstrates the 
effectiveness and superior performance of these 
simplest fuzzy controllers in comparison with linear 
PI controller. Theoretical analysis coupled with signal 
flow graph representation involving various system 
models demonstrates the effectiveness and superior 
performance of these simplest fuzzy controllers in 
comparison with the comparable non-linear PI 
controller. 

This paper organized as follows, section II 
describes the configuration of non-linear fuzzy PI 
controller, Section III describes fuzzification 
algorithm and fuzzy control rules, section IV 
describes Fuzzy logic for the evaluation of fuzzy 
control rules. Section V describes Defuzzification 
Module and Structural analysis of the fuzzy PI 
controller. Section VI describes Linearization using 
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Perturbation Theory section VII describes the SFG 
analysis of the fuzzy PI controller. 
 

2. Configuration of Non - Linear Fuzzy PI 
controller: 
The fuzzy PI controller being developed is a 
nonlinear fuzzy PI controller. PI or Fuzzy PI controller 
is the most used controller in the industry, because 
the proportional (P) with the Integral actions in the 
proportional- integral (PI) controller eliminates the 
steady state error. 
 
 
  
 
 

Fig 1 :  Block Diagram of a typical fuzzy controller 
 
The inputs of the fuzzification module are scaled 
error (GE) and scaled rate (GR) . 

GE.e(nT)=GE(y(nT)-set point) 
 

GR.r(nT)=GR(e(nT)-e(nT-T)). 
 

 Where GE and GR are scalars for the error and rate, 
respectively (nT) is the process output at sampling 
time nT and e(nT-T) is error at previous sampling 
time. The set point is a target value for the process 
output. 
 

3.Fuzzification Algorithm:  
The following input membership functions are 
selected to transform inputs data of the FLC into two 
linguistic values, "P" and "N" for positive and 
negative input membership functions, as shown in 
fig.3 (a) 
 
 
 
 
 
 
Fig.2 (a) The inputs membership functions of the FLC (error and 
rate) 
 

The input membership functions of the FLC: 
For error e(nT): 

𝝁𝒑  𝒆 =  

𝟎,                                      𝑮𝑬𝒆 𝒏𝑻 < −𝐿
𝑮𝑬𝒆 𝒏𝑻 + 𝑳

𝟐𝑳
,             − 𝑳 ≤ 𝑮𝑬𝒆 𝒏𝑻 ≤ 𝑳

𝟏                                               𝑮𝑬𝒆 𝒏𝑻 > 𝐿

 
 

 

 

𝝁𝑵  𝒆 =  

𝟎,                                   𝑮𝑬𝒆 𝒏𝑻 < −𝐿
−𝑮𝑬𝒆 𝒏𝑻 + 𝑳

𝟐𝑳
,             − 𝑳 ≤ 𝑮𝑬𝒆 𝒏𝑻 ≤ 𝑳

𝟏                                           𝑮𝑬𝒆 𝒏𝑻 > 𝐿

 
 

 

where )e(μP and
)e(μN are the positive and 

negative membership functions of the error. 
For rate r(nT): 

𝝁𝒑 (𝒓) =  

𝟎,                                      𝑮𝑹 𝒓 𝒏𝑻 < −𝐿
𝑮𝑹 𝒓 𝒏𝑻 + 𝑳

𝟐𝑳
,              − 𝑳 ≤ 𝑮𝑹 𝒓 𝒏𝑻 ≤ 𝑳

𝟏                                                𝑮𝑹 𝒓 �づ𝑻 > 𝐿

 
 

 

𝝁𝑵  𝒓 =  

𝟎,                                   𝑮𝑹 𝒓 𝒏𝑻 < −𝐿
−𝑮𝑹 𝒓 𝒏𝑻 + 𝑳

𝟐𝑳
,         − 𝑳 ≤ 𝑮𝑹 𝒓 𝒏𝑻 ≤ 𝑳

𝟏                                           𝑮𝑹 𝒓 𝒏𝑻 > 𝐿

 
 

 

Where 
)r(μP and

)r(μN  are the positive and 
negative membership functions of the rate (change 
of error). 
The scaled output membership functions of FLC are 
represented by three membership functions, labeled 
as "zero", "pos" and "neg" for zero, positive, and 
negative output membership functions respectively, 
as shown in fig.3 (b) 
 
 
 
 
 
 
 

Fig.2(b) The output membership functions of the FLC 
 
 

3.1 Fuzzy Rules base Module: 
The four fuzzy control rules are: 
R1: if error is positive and rate is positive thenoutput 
is positive. 
 
R2: if error is positive and rate is negative then 
output is zero. 
 
R3: if error is negative and rate is positive then 
output is zero. 
 
R4: if error is negative and rate is negative then 
output is negative. 
 
Here AND is Zadeh’s logical “AND” defined by  

 BABA μ,μmin =  μ AND μ 
 

GU 

U(nT) 

GR 

GE e(nT) 

r(nT) 

Set point 

Fuzzify 

Fuzzy  
Control  
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for any membership value Aμ  and Bμ on the fuzzy 
subsets A and B, respectively. 

 
4. FUZZY LOGIC FOR EVALUATION OF THE 
FUZZY CONTROL RULES: 
Zadeh fuzzy logic AND operator is used to realize the 
AND operations in antecedent part of the rules. Due 
to the use of Zadeh AND operator, the input space 
must be divided into number of regions in such a 
way that in each region a unique analytical 
inequality relationship can be obtained for each 
fuzzy rule between the two membership functions 
being ANDed. 

Consider the first rule antecedent parts 
which contain two membership functions the 
boundary on which the membership value is same 
between two MFs is obtained by letting them equal. 
 
Boundary division for rule1 is given by: 
 

𝜇𝑃  𝑒 = 𝜇𝑃  𝑟  
 

𝐾𝑒𝑒 𝑛 + 𝐿

2𝐿
=

𝐾𝑟𝑟 𝑛 + 𝐿

2𝐿
 

 
𝑟 𝑛 = 𝑒 𝑛 … [1] 

 
Boundary division for rule2 is given by: 
 

𝜇𝑃  𝑒 = 𝜇𝑁  𝑟  
 

𝐾𝑒𝑒 𝑛 + 𝐿

2𝐿
=

−𝐾𝑟𝑟 𝑛 + 𝐿

2𝐿
 

 
𝑟 𝑛 = −𝑒 𝑛 … [2] 

 
Boundary division for rule3 is given by: 
 

𝜇𝑁  𝑒 = 𝜇𝑃  𝑟  
 

−𝐾𝑒𝑒 𝑛 + 𝐿

2𝐿
=

𝐾𝑟𝑟 𝑛 + 𝐿

2𝐿
 

 
𝑟 𝑛 = −𝑒 𝑛 … [3] 

 
Boundary division for rule3 is given by: 
 

𝜇𝑁  𝑒 = 𝜇𝑁  𝑟  
 

−𝐾𝑒𝑒 𝑛 + 𝐿

2𝐿
=

−𝐾𝑟𝑟 𝑛 + 𝐿

2𝐿
 

 
𝑒 𝑛 = 𝑟 𝑛 … [4] 

 
Equations [1]-[4] are used to generate individually 
the space division (plane division) between error and 
rate.  
Superimposing the four input space divisions from 
the expression [1]-[4] to form a total of 20 input 
combinations. 
 They are labeled from ICI to IC20, as shown in Fig 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Possible input combinations (IC) of scaled error and rate of 
change of error, which must be considered when the fuzzy 
controller rules are evaluated as shown in Table. 1. 

 
Now consider IC1 region and rule1, i.e. 
 
R1: if error is positive and rate is positive then 
output is positive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The rule1 is associated with error positive and rate 
positive membership functions. Consider any point 
in the IC1 region, i.e., from 0 to L [0, L] error positive 
membership function will take the values from 0.5 to 
1.0 and rate positive will take the values from 0 to 
0.5. Applying Zadeh AND operation i.e., min (e.p, 
r.p), minimum of error positive and rate positive is 

IC18 

IC14 

IC19 

IC17 

IC20 

IC5 

IC15 

-L 

IC1 

IC3 

IC2 

IC8 

(0) 

IC11 L

 
 

L 

-L 

L 

IC13 

 

IC10 

IC7 

IC16 

IC6 

IC5 

IC12 

IC4 

GR r(nT) 

GEe (nT) 

E(n) 

0 L -L 

-L 

L 

0 

R(n) 
IC18 

IC14 

IC19 

IC17 

IC20 

IC9 

IC15 

-L 

IC1 

IC3 
IC2 

IC8 

(0) 

IC11 L

 
 

L 

-L 

L 

IC13 

 

IC10 

IC7 

IC16 

IC6 

IC5 

IC12 

IC4 

GR r 

(nT) 

GEe (nT) 



B. Amarendra Reddy, Nammi Nagarjun, Praveen Adimulam / International Journal of 

Engineering Research and Applications (IJERA)  ISSN: 2248-9622  www.ijera.com
 

Vol. 2, Issue 1, Jan-Feb 2012, pp. 368-374 

371 | P a g e  

rate positive. Similarly if we apply the minimum 
operation (Zadeh AND) to all regions and all rules, 
the results are tabulated as shown in Table 1. 
 
 
Table-1evaluation results for the four fuzzy control rules 
R1-R4 for all combinations of inputs using Zadeh AND fuzzy 
logic when scaled error and rate of process output are 
within the interval [-L, L] of the fuzzification algorithm. The 
input combinations of scaled error and rate are shown 
graphically in fig 4 

 

 
These regions are necessary because they will result 
in, in each of the 20 ICs, a unique inequality between 
error and rate when each of the four fuzzy rules 
evaluated by a Zadeh logic AND. After applying 
defuzzification algorithm to each region with 
resulting memberships, we obtain the expressions 
for different IC’s which are in table2 in the next 
section. 
 

5.   Defuzzification Module: 
The defuzzification means the fuzzy to crisp 
conversions. The fuzzy results generated cannot be 
used such as to the applications hence it is necessary 
to convert the fuzzy quantities into crisp quantities 
for further processing. This can be achieved by using 
defuzzification process. Defuzzification method 
canalso be called as "rounding off" method. The 
defuzzification reduces the collection of membership 
function values into a single scalar quantity. 
The centroid defuzzification method is the mostly 
used method to convert the inference fuzzy control 
action to real number. The fuzzy logic controller 
output is obtained by, 






ri

rii

μ

μΔu
Δu(nT)

 

Where iu
 is the value of the output member for i

th
 rule, 

riμ
 corresponding inferred input member for i

th 
rule. 

 
 
 

5.1Structural analysis of the fuzzy PI controller in 
defuzzification method: 
The structure of the fuzzy PI controller from the 
defuzzification method is  

)nT(r)r,e(K)nT(e)r,e(K)nT(u
4

1i

i

P

i

I




 

 )]nT(e)r,e(K)nT(r)r,e(K[ IP   
 
Where KP(e, r) and KI(e, r) are the dynamic 
proportional gain and integral gain respectively, they 
change with e(nT) and r(nT). This is to say the fuzzy 
controller is a nonlinear PI controller with variable 
proportional gain and integral gain. We have the 
structure related to PI controller. Since the only 
difference between them are the gains. 
We now derive the analytical expressions for KP(e, r) 
and KI(e, r). First we need to divide the error-rate 
input space into 20 different input combinations as 
shown in fig.4. 
 

Table.2Mathematical input-output relations of the fuzzy 
controller for the overall input space division 

IC No. )nT(u = 

IC1 ,IC2  0.5𝐿(𝐺𝑅𝑟 𝑛𝑇 + 𝐺𝐸𝑒(𝑛𝑇)

2𝐿 − 𝐺𝐸𝑒(𝑛𝑇)
  

 IC3 ,IC4 0.5𝐿(𝐺𝑅𝑟 𝑛𝑇 + 𝐺𝐸𝑒(𝑛𝑇)

2𝐿 − 𝐺𝑅𝑟(𝑛𝑇)
 

IC5,IC6 0.5𝐿(𝐺𝑅𝑟 𝑛𝑇 + 𝐺𝐸𝑒(𝑛𝑇)

2𝐿 + 𝐺𝐸𝑒(𝑛𝑇)
 

IC7 ,IC8 0.5𝐿(𝐺𝑅𝑟 𝑛𝑇 + 𝐺𝐸𝑒(𝑛𝑇)

2𝐿 + 𝐺𝑅𝑟(𝑛𝑇)
 

IC9,IC10 𝐿 + 𝐺𝑅𝑟(𝑛𝑇)

2
 

IC11,IC12 𝐿 + 𝐺𝐸𝑒(𝑛𝑇)

2
 

IC13 ,IC14 𝐺𝑅𝑟(𝑛𝑇) − 𝐿

2
 

IC15,IC16 𝐺𝐸𝑒(𝑛𝑇) − 𝐿

2
 

 IC17 L 

 IC18  0 

IC19 -L 

IC20 0 

 

Input 
combinations 
of scaled error 
and rate as 
shown in fig 3.5 

Memberships obtained by evaluating 
fuzzy control rules R1, R2, R3 and R4 
using Zadeh AND fuzzy logic. 
R1 R2 R3 R4 

IC1 R.P R.N E.N E.N 

IC2 R.P R.N E.N E.N 

IC3 E.P R.N E.N R.N 

IC4 E.P R.N E.N R.N 

IC5 E.P E.P R.P R.N 

IC6 E.P E.P R.P R.N 

IC7 R.P E.P R.P E.N 

IC8 R.P E.P R.P E.N 
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It is clear from the equations which are given in table 
3.2, the controller may switch automatically from 
one control formula to another form time to time, 
depending on the locations of the states of the input 
(i.e., e(nT) and r(nT)). However such switching is 
always continuous in time and, moreover, smooth 
on the boundaries of any two adjacent regions, as 
can be verified by matching any two adjacent 
formulas on their boundary.The proportional gain 
and integral gain are chosen as the respective values 
of KP and KI when the error and rate of error are 

both zero: 0r(nT)e(nT)  . In this case 

4

GRGU
K P




 4

GEGU
K I




. 

5.  Linearization using Perturbation Theory: 
Linearization is a method for assessing the local 
stability of a nonlinearsystem at an equilibrium 
point. Linearization makes it possible to use tools for 
studying linear systems to analyze the behavior of a 
nonlinear system near a given point. The 
linearization of a function is the first order term of 
its power series expansion around the point of 
interest. In this paper we linearize the non linear 
system using Perturbation theory. Perturbation 
theory leads to an expression for the desired 
solution in terms of a formal power series. The 
leading term in this power series is the solution of 
the exactly solvable non-linear problem. 
We now consider incremental output of IC1 and 
apply perturbation theory to linearize it., 
 

𝑢 𝑛𝑇 =
0.5𝐿𝐺𝐸𝑒 + 0.5𝐿𝐺𝑅𝑟

2𝐿 − 𝐺𝐸𝑒
… (1) 

 
𝑢 = 𝑢0 + ∆𝑢    ;   𝑒 = 𝑒0 + ∆𝑒   ;  𝑟 = 𝑟0 + ∆𝑟 ... (2) 
 
Now put (2) in (1), we get 
 

𝑢 2𝐿 − 𝐺𝐸𝑒 = 0.5𝐿𝐺𝐸𝑒 + 0.5𝐿𝐺𝑅𝑟 
 

(𝑢0 + ∆𝑢) 2𝐿 − 𝐺𝐸 𝑒0 + ∆𝑒  = 0.5𝐿𝐺𝐸(𝑒0 +

∆𝑒) + 0.5𝐿𝐺𝑅(𝑟0 + ∆𝑟) 
 

2𝐿𝑢0 + 2𝐿∆𝑢 − 𝐺𝐸𝑒0𝑢0 − 𝐺𝐸∆𝑒𝑢0 − 𝐺𝐸𝑒0∆𝑢
− 𝐺𝐸∆𝑢∆𝑒
=  0.5𝐿𝐺𝐸𝑒0 + 0.5𝐿𝐺𝐸∆𝑒 + 0.5𝐿𝐺𝑅𝑟0

+ 0.5𝐿𝐺𝑅∆𝑟 
 

 2𝐿 − 𝐺𝐸𝑒0 ∆𝑢 = 𝐺𝐸𝑢0∆𝑒 + 0.5𝐿𝐺𝐸∆𝑒 + 0.5𝐿𝐺𝑅∆𝑟 
 

∆𝑢 =
 𝐺𝐸𝑢0 + 0.5𝐿𝐺𝐸

 2𝐿 − 𝐺𝐸𝑒0 
∆𝑒 +

0.5𝐿𝐺𝑅

 2𝐿 − 𝐺𝐸𝑒0 
∆𝑟 … (3) 

 

Equation (3) is now linearized form of incremental 
output of IC1.  

 
 
Table 3 shows all the linearized incremental outputs 
of IC1 – IC20.  
 
For the linearized IC’s we now draw the signal flow 
graphs which provides ease of model formulation 
and avoids the mathematical complexity involved in 
obtaining the linear fuzzy controller. 
 

6.Signal Flow Graph Analysis:  
Signal-flow graph is a graphical representation of 
relationships between variables of a set of linear 
algebraic equations in a system. It is a directed graph 
consisting of nodes and branches. Its nodes are the 
variables of a set of linear algebraic relations. An SFG 
can only represent multiplications and additions. 
Multiplications are represented by the weights of 
the branches; additions are represented by multiple 
branches going into one node. A signal-flow graph 
has a one-to-one relationship with a system of linear 
equations. It can also be used to solve for ratios of 
these signals. 
 
Key elements of a signal flow graph are:  

1.The system must be linear,  

IC No. )nT(u = 

IC1,IC2 
 
𝐺𝐸𝑢0 + 0.5𝐿𝐺𝐸

2𝐿 − 𝐺𝐸𝑒0
 ∗ ∆𝑒 +  

0.5𝐿𝐺𝑅

2𝐿 − 𝐺𝐸𝑒0
 ∗ ∆𝑟 

 IC3.IC4 
 
𝐺𝑅𝑢0 + 0.5𝐿𝐺𝑅

2𝐿 − 𝐺𝑅𝑟0
 ∗ ∆𝑟 +  

0.5𝐿𝐺𝐸

2𝐿 − 𝐺𝑅𝑟0
 ∗ ∆𝑒 

IC5 ,IC6 
 
𝐺𝐸𝑢0 + 0.5𝐿𝐺𝐸

2𝐿 + 𝐺𝐸𝑒0
 ∗ ∆𝑒 +  

0.5𝐿𝐺𝑅

2𝐿 + 𝐺𝐸𝑒0
 ∗ ∆𝑟 

IC7 ,IC8 
 
𝐺𝑅𝑢0 + 0.5𝐿𝐺𝑅

2𝐿 + 𝐺𝑅𝑟0
 ∗ ∆𝑟 +  

0.5𝐿𝐺𝐸

2𝐿 + 𝐺𝑅𝑟0
 ∗ ∆𝑒 

IC9,IC10 𝐿 + 𝐺𝑅∆𝑟

2
 

IC11,IC12 𝐿 + 𝐺𝐸∆𝑒

2
 

IC13 ,IC14 𝐺𝑅∆𝑟 − 𝐿

2
 

IC15,IC16 𝐺𝐸∆𝑒 − 𝐿

2
 

 IC17 L 

 IC18  0 

IC19 -L 

IC20 0 

http://en.wikipedia.org/wiki/Stability_theory
http://en.wikipedia.org/wiki/Nonlinear
http://en.wikipedia.org/wiki/Nonlinear
http://en.wikipedia.org/wiki/Nonlinear
http://en.wikipedia.org/wiki/Equilibrium_point
http://en.wikipedia.org/wiki/Equilibrium_point
http://en.wikipedia.org/wiki/Equilibrium_point
http://en.wikipedia.org/wiki/Linear_system
http://en.wikipedia.org/wiki/Taylor_expansion
http://en.wikipedia.org/wiki/Power_series
http://en.wikipedia.org/wiki/Directed_graph
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2. Nodes represent the system variables,  

3. Branches represent paths for signal flow.  

4. Signals travel along branches only in the direction 

of the arrows. 

Signal flow graphs (SFGs) can form an intuitive 
picture of the signal flow in a system. As an 
application, we will develop SFGs to all ICs from 
Table 3.3. The SFGs are shown below in fig-a, b, c, d, 
e, f, g, h. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
Fig-(d): signal flow graph model for IC7,IC8 
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Fig-(h): signal flow graph model for IC15,IC16 
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Fig-(f): signal flow graph model for IC11,IC12 
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Fig-(c): signal flow graph model for IC5,IC6 
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Fig-(b): signal flow graph model for IC3,IC4 
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Fig-(g): signal flow graph model for IC13,IC14 
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Fig-(a): signal flow graph model for IC1,IC2      
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Fig-(e): signal flow graph model for IC9,IC10 
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The Transfer functions from the signal flow graphs 
are develop using mason’s gain formula and are 
tabulated in table-4. 
 
Table-4 transfer functions of the signal flow graphs 

 

7. Conclusion: 
In this paper we have derived the analytical input 
and output relationships for the linearized fuzzy PI 
controller having two input variables and one output 
variable. There are two triangular/trapezoidal 
membership functions in each input variable and 
three triangular/trapezoidal membership functions 
in output variable. Zadeh AND operator is used to 
evaluate the antecedent part of the each of the rule. 
Since Zadeh AND is used, the input space is divided 
into 20 regions. Then the non-linear PI controller is 
linearized around an operating point using 
perturbation method. For the linearized fuzzy PI 
controller signal flow graphs are developed for each 
IC and Transfer function from SFG for linearized 
fuzzy PI controllers was developed. 
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IC Transfer function from SFG 

IC!,IC2 0.5𝐺𝐸𝐺 0.5𝐿 + 𝑈0 + 0.5𝑆𝐿𝐺𝑅𝐺

2𝐿 + 𝐺𝐸 −𝐸0 + 0.5𝐿𝐺 + 𝑈0𝐺 + 0.5𝐿𝐺𝑅𝐺
 

IC3,IC4 0.5𝐺𝐸𝐺 1 + 𝑆 + 𝑆𝐺𝑅𝑈0

2𝐿 + 𝐺𝐸 −𝑅0 + 0.5𝐿𝐺 + 0.5𝐿𝐺 + 𝑆𝐺𝑅𝑈0𝐺
 

IC5,IC6 0.5𝐺𝐸𝐺 0.5𝐿 + 𝑈0 + 0.5𝑆𝐿𝐺𝑅𝐺

2𝐿 + 𝐺𝐸 𝐸0 + 0.5𝐿𝐺 + 𝑈0𝐺 + 0.5𝐿𝐺𝑅𝐺
 

IC7,IC8 0.5𝐺𝐸𝐺 1 + 𝑆 + 𝑆𝐺𝑅𝑈0

2𝐿 + 𝐺𝐸 𝑅0 + 0.5𝐿𝐺 + 0.5𝐿𝐺 + 𝑆𝐺𝑅𝑈0𝐺
 

IC9,IC10 𝐺(𝐺𝑅 + 𝐿)

2 + 𝐺𝑅𝐺
 

IC11,IC12 𝐺(𝐺𝐸 + 𝐿)

2 + 𝐺𝐸𝐺
 

IC13,IC14 𝐺(𝐺𝑅 − 𝐿)

2 + 𝐺𝑅𝐺
 

IC15,IC16 𝐺(𝐺𝐸 − 𝐿)

2 + 𝐺𝐸𝐺
 


