
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 302

Designing Web Services using Web Service Specifications

G. M. Tere
1
, R. R. Mudholkar

2
, B. T. Jadhav

3

1
 Department of Computer Science,

 Shivaji University, Kolhapur – 416 004, India

girish.tere@gmail.com
2
 Department of Electronics,

 Shivaji University, Kolhapur – 416 004, India

rrm_eln@unishivaji.ac.in
3

Department of Electronics and Computer Science,

Y.C. Institute of Science, Satara – 415 001, India

btj21875@gmail.com

ABSTRACT

A Web service is a programmatic interface for application-to-

application communication that is invoked by sending and

receiving XML. Web services are often developed using Web

Service Description Language (WSDL) interface. WSDL is

contract between service provider and service clients. WSDL

files are basically XML files and because of it more time is

required to process WSDL files in Java environment. We need

to perform serialization and deserialization in efficient way.

We propose alternative to WSDL, called as Web Service

Specification (WSS) using which a performance of web services

can be improved. Our experiments show that we have reduced

the execution time of web services between 70% to 80% of

execution time required for web services with WSDL.

KEYWORDS

SOAP, Web service, WSDL, WSS, XML

1. INTRODUCTION

With Web Services, information sources become components

that you can use, re-use, mix, and match to enhance Internet

and intranet applications ranging from a simple currency

converter, stock quotes, or dictionary to an integrated, portal

based travel planner, procurement workflow system, or

consolidated purchase processes across multiple sites. Each is

built upon an architecture that is presented in this paper as an

illustrated stack of layers, or a narrative format. Each vendor,

standards organization, or marketing research firm defines Web

Services in a slightly different way. Gartner [7], for instance,

defines Web Services as "loosely coupled software components

that interact with one another dynamically via standard Internet

technologies." Forrester Research [17] takes a more open

approach to Web Services as "automated connections between

people, systems and applications that expose elements of

business functionality as a software service and create new

business value." Although we have a variety of Web Services

architectures, Web Services, at a basic level, can be considered

a universal client/server architecture that allows disparate

systems to communicate with each other without using

proprietary client libraries, according to the WebMethods

whitepaper, Implementing Enterprise WebServices with the

WebMethods Integration Platform [17]. The whitepaper points

out that ―this [architecture] simplifies the development process

typically associated with client/server applications by

effectively eliminating code dependencies between client and

server‖ and ―the server interface information is disclosed to the

client via a configuration file encoded in a standard format (e.g.

WSDL).‖ Doing so allows the server to publish a single file for

all target client platforms. Serialization is the process of

transforming an instance of a Java class into an XML element.

The inverse process, transforming an XML element into an

instance of a Java class, is called deserialization. WSDL [2] is

an interface definition language, written in XML, used for

describing Web services. The term ―WSDL-centric‖ means

creating a Web service by building its WSDL and using that

WSDL document with references to the Java elements that

implement it.

JWS has weaknesses, particularly when it comes to the

development approach known as Start from WSDL and Java

[3]. The JWS standards present a Java-centric approach to Web

Services. This approach can be troublesome when we need to

work with established SOA standards and map Java

application to existing XML Schema documents and WSDLs.

In such situations, it’s helpful to be able to take a WSDL-

centric approach to Web Services development. In this area,

JWS is less strong [20].

2. USE OF REFLECTION

Reflection [8] is commonly used by programs which require

the ability to examine or modify the runtime behavior of

applications running in the Java virtual machines. Reflection is

a powerful technique and that can enable applications to

perform applications which would otherwise be impossible

[10]. Reflection is the process by which a computer program

can observe (do type introspection) and modify its own

structure and behavior at runtime [10]. In many computer

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 303

architectures, program instructions are stored as data—hence

the distinction between instruction and data is merely a matter

of how the information is treated by the computer and

programming language. Normally, instructions are executed

and data is processed; however, in some languages, programs

can also treat instructions as data and therefore make reflective

modifications. Reflection can be used for observing and/or

modifying program execution at runtime. A reflection-oriented

program component can monitor the execution of an enclosure

of code and can modify itself according to a desired goal

related to that enclosure. This is typically accomplished by

dynamically assigning program code at runtime.

In object oriented programming languages such as Java,

reflection allows inspection of classes, interfaces, fields and

methods at runtime without knowing the names of the

interfaces, fields, methods at compile time. It also allows

instantiation of new objects and invocation of methods. Write

the body of the paper here.

3. DESIGN OF FRAMEWORK

Web Service Framework

We designed Web Services framework [4,5] which is based on

open industry standards, defining four requirements:

description, discovery, request/response, and transport. Fig. 1

shows how various parts of the Web Services framework are

related to one another. Starting in the upper-left, Consumer

Applications send XML Service Requests to the Web Services

Client Library, using SOAP and ICE. The Client Library

provides Java and PL/SQL interfaces to the Web Services

Broker. Interacting with the Broker for Web Services and

Database Services is accomplished though SOAP, Java

reflection, or JDBC via software components called adapters.

When the Broker returns results to the Services, it dispatches

them to the Consumer applications for display to end-users.

Software components called transformers allow the framework

to support several output formats, including HTML pages, and

pages formatted for wireless and mobile devices.

The Web Services framework insulates developers from the

complexity of interacting with multiple information sources,

protocols, and delivery channels.

Figure 1. Web Services Framework

It is component-based to maximize re-use. It includes tools for

creating, managing, and monitoring services. Fig. 2 gives a

developer's view of how various parts of the framework

interact.

Figure 2. Interactions within Web Services Framework

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 304

Working clockwise from the left, the steps are:

1) A Service Provider can start by reusing an existing Web or

database application - ideally, one that returns results in

XML. If not, Web Services includes utilities that map

HTML and other data sources to XML. Web Services also

includes a Creation Assistant that generates a simple

service from a Web page.

2) Next, a Service Administrator uses a tool of choice to

register the service, making it available to consumers.

3) Service Consumer Applications query the Service Registry

to get the data required to find and invoke a service. Data

about Service Consumer Applications, including access

privileges, is stored and maintained in the Application

Profile Registry.

4) Then, the Service Consumer Application interacts with the

Web Services Broker, which uses an input transformer, if

needed, to convert the Consumer's request to a format it

can use internally. When the service returns a result, the

Web Services Broker applies an output transformer, if

needed, and dispatches the data to the Service Consumer

application. The Service Consumer Application can

display the data to end-users, or use it in the flow of some

business logic.

5) The Web Services Broker invokes the service via an

adapter appropriate for the service's protocol (HTTP,

SMTP, etc.).

4. WEB SERVICE SPECIFICATIONS (WSS)

We need WSDL to connect to a Web Service. This language is

an XML format for describing network services. With it,

service requesters can search for and find the information on

services via UDDI, which, in turn, returns the WSDL reference

that can be used to bind to the service. WSDL is a specification

[20] defining how to describe web services in a common XML

grammar. WSDL describes four critical pieces of data:

 Interface information describing all publicly available

functions

 Data type information for all message requests and

message responses

 Binding information about the transport protocol to be

used

 Address information for locating the specified service

Using WSDL, a client can locate a web service and invoke any

of its publicly available functions. With WSDL-aware tools,

you can also automate this process, enabling applications to

easily integrate new services with little or no manual code.

WSDL therefore represents a cornerstone of the web service

architecture, because it provides a common language for

describing services and a platform for automatically integrating

those services. Fig. 3 shows a concise representation of the

WSDL specification.

Figure 3. The WSDL specifications [20]

Web Service Conversational Language (WSCL) helps

developers use the XML Schema to better describe the

structure of data in a common format (say, with new data

types) the customers, Web browsers, or indeed any XML

enabled software programs can recognize. This protocol can be

used to specify a Web Service interface and to describe service

interactions. Given the WSDL file one can manually create a

SOAP client to invoke the service. We can also automatically

invoke the service via a WSDL invocation tool as shown in

Fig. 4.

Figure 4. WSDL Invocation Tool

WSDL documents are essentially XML documents and are very

lengthy. Therefore more computer resources are used to parse and

then process the WSDL documents. To improve performance we need

some alternative to WSDL. In this paper, we propose Web Service

Specifications (WSS) as alternative to WSDL. All necessary

information to invoke the web service will be available in WSS files.

We have developed application using Eclipse and J2EE. Screen shot

of the application is shown in Fig. 5.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 305

Figure 5. Application to develop Web Services

WSS file is similar to WSDL of WS, it has all the information

required for creating web service. From the specification files

our framework can generate :

 Specification documentation.

 The specification documentation is a set of static HTML

pages containing the description of specification. It lists all

APIs, functions, types and error codes. The pages also

provide an easy way to call your function using the web

application.

 The web application - The web application is packaged as

a WAR file that you can deploy in any servlet container.

Once the WAR file is deployed, you can access your API

through HTTP.

 The client-side API - The client API is a JAR file that can

be used to invoke remotely the API functions from Java

programs.

 It features various advanced features, such as load-

balancing, fail-over, extensive logging, etc...

 The Javadoc.

 The Javadoc contains the definition of the API for the Java

classes, including the generated classes. The

 javadoc can be generated either for the server side classes

or the client side classes.

5. DESIGNING WEB SERVICES USING WSS

In Fig. 7 we give the sample HelloWS.wss file. This wss file

contain the information to call HelloWS. The corresponding

HelloWS.wsdl file will be very large. It is not shown here, but

is available on internet.

Figure 6. Client for calling Web Service

#Name

WSNAME %% com.ws.beans.HelloWS

#URL

WSURL %% http://localhost:8080/WS/HelloWS.sws

#Unique ID of WS

WSID %% 27763265-177f-4770-bb22-16fcd6e9d105

RFN %% sayHello

RTYPE %% String

PCNT %% 1

PARAM %% String

Figure 7. Sample WSS file, HelloWS.wss

A client application can be a servlet. As shown in Fig. 8, we

wrote a servlet, which calls a Web service, which returns a

string in capital. Corresponding .wss, StringUtil.wss, file

generated is shown in Fig. 9. Output of Web service is shown

in Fig. 10.

protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

 StringUtilProxy proxy = new StringUtilProxy();

 String result = proxy.toCapital("web services are very

 useful.");

 response.getWriter().println(result);

}

Figure 8. Servlet calling to a Web Service

#Name

WSNAME %% com.ws.beans.StringUtil

#URL

WSURL %% http://localhost:8080/WS/StringUtil.sws

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 306

#Unique ID of WS

WSID %% 622f024c-12af-4c44-9fb2-d5ea67df36ce

RFN %% toCapital

RTYPE %% String

PCNT %% 1

PARAM %% String

RFN %% getSquare

RTYPE %% long

PCNT %% 1

PARAM %% int

Figure 9. StringUtil.wss

Figure 10. Output of Web Service

6. RESULTS OBTAINED

We run the web services on DELL INSPIRON CORE 2 Duo

CPU @ 2 GHz with 4 GB RAM. We measured Round Trip

Time (RTT) in msec of different web services using following

Java code fragment:

long start = System.currentTimeMillis();

<...call to web server ...>

System.out.println("Time taken: "+

 (System.currentTimeMillis() - start)) + "ms");

We run the HelloWorld and String Utilities web services five

times using WSDL and WSS approach and calculated the

average time needed to complete round trip. These values are

shown in Table 1 and graphically plotted in Fig. 11.

Table 1. Comparison of different approaches

 Round Trip Time of different

web services in msec (Average)

Web Service Using

WSDL

Using WSS

Hello World 45 35

String Utilities 128 96

7. CONCLUSION

In this paper we have proposed alternative to WSDL. WSDL

are basically large XML files. Therefore to process WSDL files

significant time is needed. We developed our own Web Service

Specification, WSS, approach developed using Java reflection.

Using our approach we can develop and call web services fast

as compared to the traditional approach. We have reduced the

time to three fourth of the traditional approach.

Fig. 11 RTT for different frameworks

FUTURE SCOPE

We need to examine our approach with web services which

return records from a database like MS Access, Oracle or SQL

Server.

REFERENCES

[1] Apache CXF, http://cxf.apache.org/ , Accessed on 10th

Feb 2012
[2] Ben Shil, A.; Ben Ahmed, M.; Additional Functionalities to

SOAP, WSDL and UDDI for a Better Web Services'

Administration, 2nd International Conference on Information

and Communication Technologies, 2006. ICTTA '06. Volume

: 1, pp: 572 - 577

[3] Bobby Bissett, Building JAX-WS 2.0 Services with NetBeans

5.0 and GlassFish, http://jax-ws.java.net/articles/jaxws-

netbeans/glassfish.html, Accessed on 10th Feb 2012

[4] Cao Hong-Hua; Ying Shi; Cui Hua; Xiao Yang; , "Towards a

Framework for Designing, Deploying and Executing Semantic

Web Service-Based Process," Wireless Communications,

Networking and Mobile Computing, 2008. WiCOM '08. 4th

International Conference on , vol., no., pp.1-4, 12-14 Oct. 2008

[5] Chaoying Ma; Bacon, L.; Petridis, M.; Windall, G.; , "Towards

the Design of a Portal Framework for Web Services

Integration," Telecommunications, 2006. AICT-ICIW '06.

International Conference on Internet and Web Applications and

Services/Advanced International Conference on , vol., no., pp.

163, 19-25 Feb. 2006

[6] Eckstein, and Robert Rajiv Mordani. “Introducing JAX-WS 2.0

with the Java SE 6 Platform, Part 2,” November

2006.http://java.sun.com/developer/technicalArticles/J2SE/jax_

ws_2_pt2/Monson-Haefel, Richard. J2EE Web Services.

Addison-Wesley Professional, ISBN 0130655678, October

2003.

[7] Gartner,

http://www.gartner.com/technology/core/products/research/topi

cs/webServices.jsp, Accessed on 12th Feb 2012

0

50

100

150

Hello World String Utilities

m
se

c

Web Services

Round Trip Time of
different web services

Using WSDL

Using WSS

http://cxf.apache.org/
mailto:bobby.bissett@sun.com
http://jax-ws.java.net/articles/jaxws-netbeans/glassfish.html
http://jax-ws.java.net/articles/jaxws-netbeans/glassfish.html
http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/
http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 307

[8] Gordon S. Blair, Geoff Coulson, Lynne Blair, Reflection, Self-

Awareness and Self-Healing in OpenORB, WOSS '02, Nov 18-

19, 2002, Charleston, SC, USA. Copyright 2002 ACM

[9] Haidar, A. N.; Abdallah, A. E.; Abstractions of Web Services,

14th IEEE International Conference on Engineering of Complex

Computer Systems, 2009, pp: 182 - 191

[10] Ira R. Forman and Nate Forman, Java Reflection in Action

(2005), ISBN 1-932394-18-4

[11] Jen-Yao Chung; An industry view on service-oriented

architecture and Web services, IEEE International

Workshop on Service-Oriented System Engineering, 2005.

SOSE 2005. pp:59

[12] Kumar, A.; , "Distributed system development using Web

service and Enterprise Java Beans," Services Computing, 2005

IEEE International Conference on , vol.2, no., pp. xiii vol.2, 11-

15 July 2005

[13] Li Zhang; , "Requirement engineering for Web

applications," Web Site Evolution, 2008. WSE 2008. 10th

International Symposium on , vol., no., pp.1, 3-4 Oct. 2008

[14] Preeda Rajasekaran, John Miller, Kunal Verma, and Amit

Sheth, Enhancing Web Services Description and Discovery to

Facilitate Composition, SWSWPC 2004, LNCS 3387, pp. 55 –

68, 2005. © Springer-Verlag Berlin Heidelberg 2005

[15] Rama Pulavarthi, Monitoring SOAP Messages Made Easy With

JAX-WS RI 2.0.1,

http://weblogs.java.net/blog/ramapulavarthi/archive/2006/08/mo

nitoring_soap.html, Accessed on 10th Feb 2012

[16] Rama Pulavarthi, Useful Goodies for Web Service Developers

in JAX-WS 2.1 RI,

http://weblogs.java.net/blog/ramapulavarthi/archive/2007/02/use

ful_goodies.html, Accessed on 10th Feb 2012

[17] Ted Schadler, Web Services: The Next Technology

Thunderstorm, Forrester Research, Mar 2002

[18] Tsai, W.T.; Paul, R.; Yamin Wang; Chun Fan; Dong

Wang; Extending WSDL to facilitate Web services testing,

Proceedings of 7th IEEE International Symposium on High

Assurance Systems Engineering, 2002, pp: 171 - 172

[19] Walmsley, Priscilla. Definitive XML Schema. Prentice-Hall

PTR, ISBN 0321146182, December 2001.

[20] Web Services Description Language (WSDL) Version 2.0 Part

1 and Part 2: Core Language. W3C Working Draft, August 3,

2005. www.w3.org/TR/wsdl20/

http://weblogs.java.net/blogs/ramapulavarthi
http://weblogs.java.net/blog/ramapulavarthi/archive/2006/08/monitoring_soap.html
http://weblogs.java.net/blog/ramapulavarthi/archive/2006/08/monitoring_soap.html
http://weblogs.java.net/blogs/ramapulavarthi
http://weblogs.java.net/blog/ramapulavarthi/archive/2007/02/useful_goodies.html
http://weblogs.java.net/blog/ramapulavarthi/archive/2007/02/useful_goodies.html

