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ABSTRACT: 

In order to investigate the local filtering behavior of the Retinex model, we propose a new implementation in 

which paths are replaced by 2-D pixel sprays, hence the name “random spray Retinex.” A peculiar feature of 

this implementation is the way its parameters can be controlled to perform spatial investiga-tion. The 

parameters’ tuning is accomplished by an unsupervised method based on quantitative measures. This procedure 

has been validated via user panel tests. Furthermore, the spray approach has faster performances than the path-

wise one. Tests and results are presented and discussed. 

 

Index Terms: Locality of color perception, pixel sprays, Retinex. 

 

  

I. INTRODUCTION 
 THE human visual system (HVS) does not 

perceive the color of an area independently from the 

visual scene in which it lies; instead, it is heavily 

influenced by the chromatic content of the other 

areas of the scene. This psychophysio-logical 

phenomenon is the locality of color perception. One 

of the earliest models able to deal with locality of 

perception has been Retinex by Land and McCann  

[1]. The scientific community has always been 

interested in this model and its 

 

various applications, as reported in  [2]. 

 

In the basic Land and McCann implementation of 

Retinex, locality is achieved through paths scanning 

images. 

 

A great amount of implementations and analysis 

followed after this first work. These can be divided 

into two major groups, differing from the way they 

achieve locality: sampling the chro-matic content 

around a pixel  [3]–[7] or integrating it  [8]–[15]. 

 

All the sampling implementations that use a path-

wise ap-proach have to deal with the following 

problems: strong depen-dency on paths geometry, 

high computational cost, and sam-pling noise. 

 

On the basis of a recent mathematical analysis of 

path-wise Retinex algorithms  [16], we will prove 

the intrinsic redundancy of this approach. 

Consequently, we will propose an extension that 

allows to keep the sampling approach, highly 

reducing the problems related to the use of paths. 

 

This alternative technique is constructed replacing 

paths with random sprays, i.e., 2-D point 

distributions across the image, so the name “random 

spray Retinex” (RSR). We will show how it is 

possible to change the spray density around a pixel 

and how this leads to the ability of finding out 

information about locality of color perception within 

the Retinex model. 

 

The structure of the paper is the following. In  

Section II, we review the basic information 

contained in  [16] about the mathe-matical 

formulation of path-wise Retinex implementations 

and its consequences on the intrinsic properties of 

the model. In  Sec-tion III, we motivate the passage 

from paths to sprays used in  Section IV to 

implement RSR and discuss its properties. Finally,  

Section V is dedicated to the tuning of RSR parameters. 

 

II. MATHEMATICAL DESCRIPTION OF 

RETINEX 
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All the options together realize the well-known 

ratio-threshold-reset mechanism of Retinex.  
This description of the original Retinex algorithm 

is exhaus-tive but not predictive because of the 

presence of the threshold mechanism. In  [16], we 

have shown that, for such values of , the difference 

between Retinex with and without threshold has an 

upper bound which has negligible effects for the 

final light-ness computation. In  [16], it has been 

proved that the really im-portant mechanism of 

Retinex is the reset, which determines its filtering 

properties. Hence, we are going to study Retinex 

fixing  until the rest of the paper.  
The great advantage to neglecting the threshold 

mechanism is that the mathematical formulation 

undergoes a significant sim-plification, and it can be 

proved  [16] that the lightness value can be written 

with this closed formula 

 

 
It follows that the problem of finding  reduces 

to the problem of finding the maximum value 

assumed by the image function  along , for 

every . We stress that this result is 

independent from paths geometry.  
Finally, we remember that the analysis of formula  

(3) performed in  [16] revealed three intrinsic 

characteristics of Retinex. The first is that its filtering 

properties are strongly image dependent; the second is 

that, when path lengths tend to very big values 

(compared with the image size), Retinex loses its local 

properties and becomes a global white-patch algorithm. 

Finally, the third intrinsic property is that Retinex is not 

an idempotent operator, i.e., in general,  , 

but subsequent iterations of Retinex converge to a fixed 

image qualitatively characterizable as follows: Every 

path travels at least one pixel with intensity 1 in every 

fixed chromatic channel. 
 

III.  FROM PATHS TO PIXEL SPRAYS 
 

The information given by the mathematical 

formulation of Retinex have strong consequences on 

the structure of  : The set of paths 

embedded in the image and ending in the point . 

After formula  (3), on this set, it is natural to define 

this equivalence relation: Given  , 

 
where  and  are the codomain of the paths, i.e., 

the collec-tions of pixels traveled by  and , 

respectively.  
Paths belonging to different equivalence classes 

give different contributions to the lightness 

computation, while every path in a given 

equivalence class is characterized by the same value 

of  . It immediately follows that, for the 

purposes of Retinex,  contains redundant 

paths and so the really inter-esting set of paths is the 

quotient set , whose el-ements are the 

equivalence classes of paths with respect to the 

equivalence relation defined in  (4).  
Path-wise Retinex implementations are affected by 

two kind of redundances: From one side, many paths 

must be used to reduce the sampling noise; from the 
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other side, as just proved, they can be organized in 

equivalence classes, so that if one uses two paths 

belonging to the same class, they will lead to the same 

chromatic information, i.e., they are redundant.  
In each equivalence class, one can choose a single 

represen-tative path to compute  ; in particular, the 

shortest one is the two-points path whose codomain is 

simply . It fol-lows that the ordering operations 

needed to generate the paths are perfectly uninfluential 

for the final lightness computation. 

 
Moreover, by a mathematical point of view, paths 

are topo-logical manifolds of dimension 1 embedded in 

the image, which is a topological manifold of 

dimension 2, so paths do not really scan local 

neighborhoods of a pixel, but rather particular di-

rections in these neighborhoods. This directional 

extraction of information can lead to halos or artifacts 

in the filtered image.  
The classical implementations of Retinex try to 

remedy this problem using a large number of paths, 

but this increases the filtering time and does not 

really overcome the problem.  
We see that there are three reasons for which 

paths are not perfectly suitable for the analysis of 

locality of color perception within the Retinex 

model: They are redundant, their ordering is 

completely uninfluential, and they have inadequate 

topological dimension.  
Thus, we are lead to use 2-D objects, such as 

areas, instead of 1-D paths to analyze locality of 

color perception. More pre-cisely, our idea is to 

implement the investigation about locality selecting 

pixels from these areas with a density sample that 

changes according to a given function of their 

distance with re-spect to the target pixel . Each 

function generates a different kind of pixel selection 

around , leading to different kind of “sprays,” each 

of which reveals different local filtering proper-ties.  
 Sections IV– VI explain in detail how it is 

possible to make these ideas concrete, generating the 

new implementation of Retinex that we have 

denoted with RSR: “Random Sprays Retinex.” 
 

IV.  RSR IMPLEMENTATION 
 

RSR is a new implementation of the original Retinex 

model  [1] which has been inspired from the results of 

the mathematical analysis of Retinex performed in  

[16]. In RSR, the role of a path  traveling  pixels 

and ending in the target  is played by  , a 

spray composed by  pixels and centered in . In fact, 

 random sprays are selected from a precomputed set 

(the symbol  now will be used to denote the number 

of sprays to put in stronger evidence of the 

correspondence between paths and sprays). The typical 

ratio-reset operation along a path is substituted by the 

search of the pixel with highest intensity in the whole 

spray. It will be clear from the following discussion 

that, once the number of points per spray is chosen, 

there is no need to vary it with ; hence, from now on, 

we will write  instead of  to denote the number of 

pixels per spray.  
The functional expression of the formula  (3) to 

compute the lightness remains exactly the same in 

both algorithms, so they share the same intrinsic 

properties recalled at the end of  Sec-tion II. This is 

the reason why the results about locality of color 

perception that we will get thanks to the RSR 

implementation can be referred to the Retinex model.  
Notice that the only operations performed by RSR 

in each spray are  comparisons (needed to find out 

the pixel with highest intensity) and one division. 

So, RSR is significatively faster than the previous 

path-wise Retinex implementations.  
Let us now show how to construct  . With a 

random point generator, we can get a uniform random 

distribution of  values in the real unit interval  . Then, 

by multiplication, we can extend this distribution to any 

real interval; in particular, we are interested to the intervals 

 and  , where , 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 1.  Computation of the mean areolar density in function of the 

spray radius. 
 
is a given positive real number that will represent the 

radius of the spray. We denote, respectively, with 

 and  the corresponding 

uniform random distributions.  
Now, if  are the coordinates of , we can define 

the polar coordinates of a generic pixel  

belonging to  in this way. 
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where  ,  .  

These are the coordinates of pixels that have an 

isotropic an-gular distribution in a circle of radius  

centered on the pixel .  
Notice, however, that the radial density is not 

isotropic; in fact, because of the rotation, the spray 

results are more dense near the target pixel  than far 

away. To compute  , the mean areolar density 

variation in the function of , consider, as in 
 Fig. 1, a circleof arbitrary radius  ,    , cen- 

 

tered on  . The area ofis , so    , more-  
   

  
over, since we are dealing with uniform random 

distributions, the mean number of points inside  is 

 . Com-puting the derivative of  with 

respect to , we get the rate of change of the average 

areolar density, in fact  

 
Thus, the mean radial density of spray pixels 

decreases as the inverse radius.  
 Fig. 2 shows an example of such a spray with 400 

pixels and radius .  
The angular isotropy is a natural requirement that 

must be satisfied by the spray, since the presence of 

privileged directions generates artifacts and haloes in 

the filtered image.  
Now, the local properties of Retinex can be analyzed in 

a very simple way applying a function on the 

coordinate  to change the radial density of the spray 

pixels around . Precisely, given  
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any function , we can consider the 

modified spray whose pixels have polar coordinates 

defined by  

 

 
of the naturally localized spray. Instead, powers of  

with ex-ponents greater than 1 and the normalized 

exponential function tend to increase the density around 

the center. Finally, powers of  with exponents in  

and the normalized inverse exponen-tial applied on  

tend to delocalize the spray. The multiplication of  by 

a constant coefficient  simply changes the radial 

ex-tension of the naturally localized spray, 

expanding the radius, when , or contracting it, 

when .  
To perform the analysis of locality in RSR, we 

must tune  and the other parameters of the 

algorithm. Before showing the results about tuning, 

we briefly summarize all these parameters and 

discuss their meaning in  Section IV-A. 

 
A.  RSR Parameters and Their Meaning 
 

RSR depends on four parameters:  (the radius of 

the sprays),  (the radial density function)  (the 

number of sprays), and  (the number of pixels per 

spray).  
The radius  of the spray defines the extension of 

the circular area analyzed around the pixel . This area 

must be tuned to get enough information about the 

color distribution around .  
As already stated, the function  changes the 

radial density of the spray pixels. It must be tuned to 

find out what is the spray pixel distribution that 

better fits the computational reproduction of color 

perception performed by the HVS.  
For each  , there is a non zero probability 

to find the pixel with highest intensity  in an 

isolated pixel not related to the context. This, of 

course, would produce chromatic noise in the 

filtered image. Since the spray pixels are generated 

by a random point generator, all the  sprays are 

different, and so, statistically speaking, the influence 

of isolated pixels on the global computation of  

decreases when we average many sprays 

contributions  . Hence, the higher the number of 

sprays, the lower the chromatic noise in the filtered 

image. This is confirmed by the tests performed (as 

will be discussed later), which also shown that, to 

avoid pattern replication all across the image, the 

sprays must be taken by a precomputed set of, at 

least, a thousand sprays.  
Finally, the number  of pixels per spray determines 

how much information is extracted from the spray area. 

If we use very large values of , we cover the whole 

spray area, losing the locality of the spray distribution; 

instead, if we use small values of , we cannot get 

enough information to correctly compute 
  . 

 

V.  TUNING RSR PARAMETERS 
 

We performed our tests on a set of over 100 very 

different pictures given by real-world images, 

portraits, landscapes, and geometric images. 

 
A.  Tuning the Spray Radius 

The easiest parameter to tune has proved to be the 

radius: For all images and independently from the 

other parameter of RSR, our tests showed that the 
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optimal value for  is DIAG, the value of the 

diagonal of the image.  
The reason is easily comprehensible: If one uses a 

smaller radius, then two pixels that lie near the extreme 

points of the diagonals can never be compared. The 

effect of using a smaller radius than DIAG can be clearly 

seen comparing  Figs. 11 and  12, which have been 

filtered with  and , 

 

 
 

respectively, keeping all the other parameters 

constant:  as ra-dial coordinate, , .  
Furthermore, it is not useful to use a radius larger 

than DIAG, since the spray loses part of its density 

around the target pixel and many spray points lie 

outside the image area. 
 
B.  Tuning the Radial Density Function 
 

The radial density of the spray is responsible for 

the local property of RSR because the probability to 

find out the pixel with highest intensity in the spray 

is greater in the image areas where the spray is 

denser than in the image regions where the spray has 

only few points.  

It is well known that tests about human color 

perception show that the chromatic influence 

between two pixels decreases with their distance 

(e.g.,  [17]–[20]). This fact is implemented in every 

color perception model: path-wise algorithms (e.g.,  

[6]) sample the image content with paths that are 

denser in the immediate neighborhood of the target 

pixel than far away, while integra-tive algorithms 

(e.g.,  [10]) use a center/surround technique that 

weights the surround of the target pixel with 

monotonically de-creasing functions.  
Coherently with this, even RSR revealed that 

delocalized sprays are inadequate to correctly 

simulate color perception by the HVS. For example,  

Fig. 14 shows the result of filtering the image in  

Fig. 13 using  as radial coordinate.  
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As a consequence, the only interesting radial 

density func-tions are those that correspond to 

monotonically decreasing ra-dial densities. Only 

such functions will be considered in the next 

discussion.  
We conducted the tuning using both subjective 

quality match tests and quantitative tests about color 

constancy.  
The first kind of tests has been developed as 

follows: We fil-tered our test set of images fixing  

and  and varying the ra-dial density function. We 

have displayed the images on a middle gray 

background of a calibrated monitor in a dark room. 

Then we asked a collection of users to indicate in a 

scale between 1 (poor) and 5 (excellent), the degree 

of naturalness (color plausi-bility in relation to the 

personal experience), absence of noise, and detail 

visibility of the filtered images. The results of our 

tests, averaged on the three questions and on the test 

set images, are shown in  Fig. 15.  
The images filtered with the naturally localized 

spray have al-ways received the best judgement by 

the users. Starting from  , the sprays results too 

localized and the corresponding filtered images 

show an increasing amount of noise, as can be seen 

in  Fig. 16, that has been filtered with  as radial 

coordinate and with ,  (to be compared 

with  Fig. 12, which has been filtered with the same 

values of  and , but with  as radial coordinate). 

 

 
 

Regarding color constancy tests, we considered the 

pictures of the database described in  [21], consisting in 

a series of pho-tographs taken under different color 

casts. We filtered each se-ries of pictures with different 

radial density functions. Then, we computed the 

CIELab differences between the images filtered with 

every given radial density function to have a measure 

of the corresponding algorithm ability to reduce color 

cast. This methodology is motivated by the fact that 

RSR always preserves the image content and does not 

collapses the dynamic range.  
For more readability, we report only the results of 

our tests on the picture in  Fig. 17 taken under three 

different casts: Cast 1  PHILIPS Neon Neutral 

Daylight 6500K (TLD965), Cast 2  PHILIPS Neon 

Fluotone 4100K (TLD840), Cast 3  PHILIPS Neon 

Daylight 5000K (TLD950). Tests with the other 

casts shown analogous results. We choose the 

database in  [21] since it has been devised to test 

color correction algorithms without fa-cilitating any 

of them. In fact, instead of choosing a white, gray or 

black background, we used two white noise 

backgrounds with different spatial frequencies.  
The values visualized in the graphics of  Fig. 18 

correspond to the parameters  and , 

when these parameters are varied the numerical 

values of the differences change, but the relationship 

between the different radial density functions does 

not change.  
It can be seen that the density function that 

minimizes the CIELab difference between the 

filtered images is the identity function. Tests on the 

other images exhibit analogous results.  
The consequence of our subjective and quantitative 

tests is that the naturally localized spray is the most 

suitable to repro-duce the behavior of the HVS 

within the RSR implementation of the Retinex 

model. From now on, RSR will be considered only 

with  as radial coordinate.  
We recall from  (6) that the mean areolar density of 

the natu-rally localized spray decreases as the inverse 

distance from the center. It follows that, in RSR, a fixed 

pixel , every other pixel of the image, considered as a 

single entity, has a “mean chromatic influences” on  

that decreases as the inverse distance from . This fact 

implies that, statistically speaking, the chromatic in-

fluence of pixels close to  is comparable only with that 

of entire areas of pixels far from , the wideness of 

which must increase, according to  (6). This seems to 

be a good motivation to study multilevel extensions of 

RSR.  
Finally, we notice that the result of this section 

corresponds to what found in the tuning experiments 

of another color per-ception model: automatic color 
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equalization (ACE)  [22], [24]. In that algorithm, the 

target pixel is compared with the other image pixels, 

each of which is weighted with a coefficient. In  

[22], it has been shown that good weight coefficients 

are the in-verse distances from the target. 
 
C.  Tuning the Number of Sprays and Pixels Per 

Spray 
 

One of the consequences of the mathematical 

analysis per-formed in  [16] is that, as the paths 

length of a path-wise Retinex implementation grows 

to great values, the algorithm loses its local 

properties showing a global white patch behavior. 

The tuning of paths length or number is still an open 

problem for path-wise Retinex implementations.  
We are now going to show that, with the RSR 

implementa-tion, it is possible to perform an 

unsupervised tuning of the pa-rameters  and  in a 

self-consistent way, highly reducing the range of 

their optimal values.  
These two parameters are strictly related because 

the light-ness is computed averaging the  

contributions of the sprays, each of which depends 

on how many points are used to find out the pixel 

with highest intensity.  
We carried out the tuning as follows. We filtered the 

images of our test set increasing  from 5 to 60 with a 

constant step of five sprays and increasing  from 250 

to 900 with a constant step of 50 points. Then, we 

calculated  and  , the CIELab 

differences between the images filtered with a fixed 

value of  and two consecutive values of , and vice 

versa, with  playing the role of . We observed that 

both  and  decrease monotonically for 

all images.  
Now, since two images are considered 

chromatically indis-tinguishable if , it is 

natural to tune  and , taking the smallest values of 

these parameters for which this inequality holds true. 

In other words, this procedure is a natural compro-

mise between the minimization of filtering time and 

the maxi-mization of filtering quality.  
To have a quantitative example to discuss, let us 

consider the tests performed on the image in  Fig. 

19.  
The interpolation graphic of , viewed as a 

function of  and , and its intersection with the 

hyperplane , is visualized in  Fig. 20.  
 Figs. 21 and  22 represent the interpolation graphics of 

the functions  and  , which are the 

level curves of the surface in  Fig. 20. Indicated in the 

horizontal axis are the two consecutive values of  or 

 corresponding to the CIELab  

 

 

 

 
difference values displayed in the graphic. Only the 

significant part of the curves are visualized.  
Since the parameters  and  control two different 

charac-teristics of the filtered image, it is not sensed to 

take high values of  and little values of , or vice 

versa, because the corre-sponding image would have 
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good chromatic quality, but high chromatic noise, or 

vice versa, respectively. Instead, the optimal  

 
couple  must be chosen as the “minimal” couple of 

in-termediate values of  and  such that the surface 

 lies under the hyperplane , where, with 

“minimal, ” we mean the couple that minimizes the 

product . For ex-ample, it can be seen from  Figs. 

21 and  22 that both the couples  and 

 correspond to intermediate values of  

and  such that the surface lies under , but 

, so that the optimal choice 

is  , because it corresponds to 750 

operations per pixels less than the other couple.  
We combined the procedure just described with 

subjective matches analogous to those performed for 

the tuning of the ra-dial density function, but now 

changing the values of  and  every time. The 

results of the tests performed on the image shown in  

Fig. 19 are presented in  Fig. 23. The surface is ob-

tained interpolating the values at the nodes  , the 

value at each node is calculated averaging the degree 

of naturalness, ab-sence of noise and detail visibility 

indicated by the users.  
It can be seen from the graphic in  Fig. 23 that the 

surface re-veals a wide constant area after the couple 

of parameters  overcomes (20 400), as predicted 

by the quantitative procedure described above. It is 

evident that there is no reason to incre-ment the 

filtering time taking greater values for  and . All 

the other tests performed has revealed agreement 

between the un-supervised procedure described 

above and the subjective tests involving users.  
Now that we described the tuning procedure, we 

show in  Figs. 24– 28 some output results of RSR with 

tuned parameters.  
As can be seen from the different values of optimal 

values of  and  for the various images, the tuning of 

 and  strongly depends on the different image 

content. The problem to find out a formula to precisely 

determine the variation of the parameters  and  in 

relation with the image content still remains open. 
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D.  Filtering the Same Image With Different Sizes 
 
If we consider a given image at different sizes, then 

we need a formula to extend the optimal values of  

and  for a certain size to the other sizes of the same 

image. Our tests have shown that the optimal value 

of  remains constant, but, as expected, the optimal 

value of  changes. In fact,  determines the amount 

of information needed to compute the lightness and 

obviously this amount must increase or decrease in 

relation with the image size. 
We can formalize the problem in this way: Suppose we 

have the same image at the sizes  and , 

and sup-pose that  , the optimal value of  for 

the image of width  and height , is known. The 

easiest way to find out  , the optimal value of 

 for the image of width  and height , is to impose 

this mathematical proportion 

 
i.e., to impose the fraction of spray pixels per unit of 

image area to remain constant.  
Applying the unsupervised tuning procedure 

previously de-scribed, all the images of our test set 

shown that, once the op-timal value of  is found for 

a given image size, formula  (8) enables to correctly 

compute the changes of the optimal value of  in 

function of the new image sizes. 

 

VI.  COMPARISON BETWEEN RETINEX 

ALGORITHMS: AN OPEN PROBLEM 
The present work is the sequel of a  [16] in which the 

intrinsic mechanisms of the original Retinex algorithm 

of Land and Mc-Cann  [1] have been mathematically 

described and analyzed. In this sequel we have proved 

that if the path-wise structure is sub-stituted with the 

random spray structure, then interesting infor-mation 

about local Retinex properties arise naturally. This is, 

of course, just a first step toward the full 

comprehension of the spatial properties of the Retinex 

model.  
There is a big interest in the comparison among 

spatial prop-erties of all the different Retinex 

implementations available in literature. We believe 

that this is a very challenging task, and it should still 

be considered an open problem. In fact, the be-

havior and consequent performances of such 

algorithms affect, and are affected by, several image 

characteristics: not only do algorithm parameters 

modify the final result, but image features also 

change the parameter choice. This regards several 

visual as-pects, among them contrast, frequency 

content, saturation, and noise.  
To judge the pleasantness and quality of the 

output images, a perceptual analysis is necessary, 

but this is particularly difficult since there is not yet 

a universally accepted perceptual measure to 

compare image quality.  
Moreover, if we consider the ability to remove color 

cast, a judging criterion for the algorithm efficiency, it 

has to be con-sider that, differently from machine (or 

perfect) color constancy, the human color constancy 

property is never complete, and it depends on several 

factors, such as temporal transients or illu-sive visual 

configurations. So, a comparison between algorithms 

based on this property would be insidious to 

implement.  
Another great difficulty for a complete 

comparison is the fact that every Retinex 

implementation depends highly on its own 

parameters, whose tuning, in the few cases in which 

it has been performed  [23], is based on very 

different criteria and image test sets.  
Finally, a mathematical description of all the 

algorithms con-sidered would create the basis for a 

common background where performing comparisons 

about the intrinsic properties of each 

implementation. 
All the open problems briefly described above 

make the im-portant issue of a proper and exhaustive 

comparison still a dif-ficult task that we deem 

interesting for future research. 
 

VII.  CONCLUSION 
We presented a new implementation of the 

Retinex model in which the chromatic information 

in the image is scanned by 2-D pixel sprays instead 

of 1-D paths, hence the name RSR for “random 

spray Retinex.” The passage from paths to pixel 

sprays is based on a recent mathematical 

characterization  [16] of path-wise Retinex 

implementations.  
While RSR shares the same intrinsic properties of 

every path-wise Retinex implementation, it has proved 

to be faster and more suitable to analyze the local 

Retinex properties, its parameters being easily handled 

in order to perform spatial investigation.  
We have analyzed, both quantitatively and 

qualitatively, the RSR performances. The analysis 

regards two groups of param-eters, one related to the 

spatial exploration and the other to the amount of 

chromatic information considered. To tune these 

parameters, we proposed an unsupervised method, 

validated through user panel tests.  
Concerning spatiality, the results have shown that 

the mean chromatic influence between pixels 

decreases as the inverse of their distance, while the 

amount of information (number of sprays and pixels 

per sprays) required for optimal results strongly 
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depends on the image content. 
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