
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 1 | P a g e

Efficient Design of Floating Point Matrix Calculations Using Vhdl

Prof. Nicky H. Bellani, Prof. Pratik R. Hajare
SBJITMR, Nagpur bellaninicky@gmail.com, pratik_hajare74@rediffmail.com

ABSTRACT-

The paper describes the efficient design of IEEE 754 single precision floating point matrix calculations. The

system provides a catalog of efficient user customizable cores,designed for FPGA implementation,ranging in six

different matrix calculations categories:(i) Matrix Transpose (ii) Matrix Addition (iii) Matrix Subtraction (iv)

Matrix Determinant (v) Matrix Multiplication (vi) Matrix Inverse. The generated cores are application core
for 2x2 Matrix calculations. In order to prove its legality, the developed algorithm is simulated using the
Xilinx 9.2i and Quartus software.
Keywords: Matrix calculations, exponent, significand, floating point

I. INTRODUCTION
 High Performance systems are required by

the developers for fast processing of

computationally intensive applications.

Reconfigurable hardware devices in the form of

Field Programmable Gate Arrays(FPGAs) have been

proposed as viable system building blocks in the

construction of high performance systems at an

economical price. Given the importance and the use

of matrix calculations in scientific computing and

data processing applications,they seem ideal

candidates to harness and exploit the advantages

offered by FPGAs. Floating point numbers are one

possible way of representing real numbers in binary

format; the IEEE 754 [1] standard presents two

different floating point formats, Binary interchange

format and Decimal interchange format. Multiplying

floating point numbers is a critical requirement for

DSP applications involving large dynamic range.

II. FLOATING POINT ARITHMETIC
 2.1 Floating Point:

 A computer word is divided into two parts,

an exponent and a significand. As an example, an

exponent of (−3) and significand of 1.5 might

represent the number 1.5 × 2–3 = 0.1875. The

advantages of standardizing a particular

representation are obvious. The semantics of

floating-point instructions are not as clear-cut as the

semantics of the rest of the instruction set, and in the

past the behaviour of floating-point operations

varied considerably from one computer family to the

next. The variations involved such things as the

number of bits allocated to the exponent and

significand, the range of exponents, how rounding

was carried out, and the actions taken on exceptional

conditions like underflow and over- flow. IEEE

arithmetic differs from much previous arithmetic in

the following major ways:

2.2 Floating Point Rounding:

1. When rounding a “halfway” result to the

nearest floating-point number, it picks the one

that is even.

2. It includes the special values NaN, ∞, and

−∞.

3. It uses denormal numbers to represent the

result of computations whose value is less

than 1.0 × 2Emin.

4. It rounds to nearest by default, but it also has

three other rounding modes.

5. It has sophisticated facilities for handling

exceptions.

 To elaborate on (1), when operating on

two floating-point numbers, the result is usually a

number that cannot be exactly represented as

another floating- point number. For example, in a

floating-point system using base 10 and two

significant digits, 6.1 × 0.5 = 3.05.This needs to be

rounded to two digits. Should it be rounded to 3.0 or

3.1? In the IEEE standard, such halfway cases are

rounded to the number whose low-order digit is

even. That is, 3.05 rounds to 3.0, not 3.1.

 The standard actually has four rounding

modes. The default is round to nearest, which rounds

ties to an even number as just explained. The other

modes are round toward 0, round toward +∞, and

round toward –∞. We will elaborate on the other

differences in following sections.

 2.3 Special Values and Denormals:

RESEARCH ARTICLE OPEN ACCESS

mailto:bellaninicky@gmail.com

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 2 | P a g e

 Probably the most notable feature of the

standard is that by default a computation continues

in the face of exceptional conditions, such as

dividing by 0 or taking the square root of a negative

number. For example, the result of taking the square

root of a negative number is a NaN (Not a Number),

a bit pattern that does not represent an ordinary

number. As an example of how NaNs might be

useful.

In IEEE arithmetic, if the input to an

operation is a NaN, the output is NaN (e.g., 3 + NaN

= NaN). Because of this rule, writing floating-point

subroutines that can accept NaN as an argument

rarely requires any special case checks.

The final kind of special values in the

standard are denormal numbers. In many floating-

point systems, if Emin is the smallest exponent, a

number less than 1.0 *2Emin cannot be represented,

and a floating-point operation that results in a

number less than this is simply flushed to 0. In the

IEEE standard, on the other hand, numbers less than

1.0 *2Emin are represented using significands less

than 1. This is called gradual underflow. Thus, as

numbers decrease in magnitude below 2Emin, they

gradually lose their significance and are only

represented by 0 when all their significance has been

shifted out. For example, in base 10 with four

significant figures, let x = 1.234 *10Emin. Then

x/10 will be rounded to 0.123 * 10Emin, having lost

a digit of precision. Similarly x/100 rounds to 0.012

*10Emin, and x/1000 to 0.001 *10Emin, while

x/10000 is finally small enough to be rounded to 0.

Denormals make dealing with small numbers more

predictable by maintaining familiar properties such

as x =y=>x-y = 0.

2.4 Representation of Floating-Point Numbers:

Fig. 1 shows the IEEE 754 single precision binary

format representation; it consists of a one bit sign

(S), an eightbit exponent (E), and a twenty three bit

fraction (M or

Mantissa). An extra bit is added to the fraction to

form what is called the significand1. If the exponent

is greater than 0 and smaller than 255, and there is 1

in the MSB of the significand then the number is

said to be a normalized number; in this case the real

number is represented by (1)

Figure: 1. IEEE single precision floating point format

Z = (-1S) * 2 (E - Bias) * (1.M) (1)

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1

2-22+ m0 2-23;

Bias = 127.

Multiplying two numbers in floating point format is

done

by 1- adding the exponent of the two numbers then

subtracting the bias from their result, 2- multiplying

the significand of the two numbers, and 3-

calculating the sign by XORing the sign of the two

numbers. In order to represent the multiplication

result as a normalized number there should be 1 in

the MSB ofthe result (leading one).

2.5 Floating-Point Addition / Subtraction

 Floating-point addition is another essential

step in matrix-vector multiplication. To perform the

accumulation for matrix-vector multiplication a

single precision floating point adder is used in this

project. The algorithm for floating-point number

addition is more complex than multiplication, as it

involves more bit shifting and comparison. The

floating-point adder performs calculations based on

the algorithm described below :

1. Compare two numbers’ exponent and keep the

largest exponent.

2. Subtract exponents. Let d be the difference

between two exponents

3. Align mantissas. Shift the mantissa to right by d

bits. (Here the number that has a smaller exponent is

the one that need to be shifted)

4. Add mantissas.

5. Test special case of the mantissa from the result.

The exponent is set to -128 if the mantissa is zero.

6. Check for overflows and underflows.

7. Let k be the number of leading non-significant

sign bits. The mantissa is left-shifted k bits. The

exponent is subtracted by k.

Figure:2 Floating Point Addition / Subtraction

2.6 Floating-Point Multiplication:

 Floating-point multiplication is one of

essential steps in matrix-vector multiplication, in

this project a single precision floating-point

multiplier is used. The floating-point multiplier

performs calculations based on the algorithm

described below:

1. Multiply mantissas.

2. Add exponents.

3. Test for special case of the mantissa. Set exponent

to –128 if the mantissa equal to zero. If

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 3 | P a g e

normalization is needed, the mantissa is shifted right

and exponent is increased accordingly.

4. Check for exponent overflow or underflow.

5. Check the sign bit, if both sign bit equal to 1 the

result of the multiplication is positive. If one of the

sign bit is 1 and the other is 0 then the result of the

operation is negative.

 The simplest floating-point operation is

multiplication, so we discuss it first. A binary

floating-point number x is represented as a

significand and an exponent,

x = s*2e.

The formula

(s1 *2e1) • (s2 *2e2) = (s1 • s2) *2e1+e2

shows that a floating-point multiply algorithm has

several parts. The first part multiplies the

significands using ordinary integer multiplication.

Because floating point numbers are stored in sign

magnitude form, the multiplier need only deal with

unsigned numbers (although we have seen that

Booth recoding handles signed two’s complement

numbers painlessly). The second part rounds the

result. If the significands are unsigned p-bit numbers

(e.g., p = 24 for single precision), then the product

can have as many as 2p bits and must be rounded to

a p-bit number. The third part computes the new

exponent. Because exponents are stored with a bias,

this involves subtracting the bias from the sum of

the biased exponents.

The interesting part of floating-point multiplication

is rounding. Since the cases are similar in all bases,

the figure uses human-friendly base 10, rather than

base 2.

 There is a straightforward method of handling

rounding using the multiplier with an extra sticky

bit. If p is the number of bits in the significand, then

the A, B, and P registers should be p bits wide.

Multiply the two significands to obtain a 2p-bit

product in the (P,A) registers Using base 10 and p =

3, parts (a) and (b) illustrate that the result of a

multiplication can have either 2p − 1 or 2p digits,

and hence the position where a 1 is added when

rounding up (just left of the arrow) can vary. Part (c)

shows that rounding up can cause a carry-out.

 a) 1.23

 *6.78_______

 8.3394 r=9>5 so round up rounds to

8.34.

b) 2.83

 *4.47 _______

 12.6501 r=5 and following digit !=0

so round up rounds to 1.27*101

P and A contain the product, case1 x0=0 shift

needed, case2 x0=1 increment exponent.

Figure: 3 Floating Point Multiplication

The top line shows the contents of the P and A

registers after multiplying the significands, with p =

6. In case (1), the leading bit is 0, and so the P

register must be shifted. In case (2), the leading bit is

1, no shift is required, but both the exponent and the

round and sticky bits must be adjusted. The sticky

bit is the logical OR of the bits marked s.

 During the multiplication, the first p −2

times a bit is shifted into the A register, OR it into

the sticky bit. This will be used in halfway cases. Let

s represent the sticky bit, g (for guard) the most-

significant bit of A, and r (for round) the second

most-significant bit of A.

There are two cases:

1.The high-order bit of P is 0. Shift P left 1 bit,

shifting in the g bit from A. Shifting the rest of A

is not necessary.

2.The high-order bit of P is 1. Set s= s.v.r and r = g,

and add 1 to the exponent.Now if r = 0, P is the

correctly rounded product. If r = 1 and s = 1, then P

+ 1 is the product (where by P + 1 we mean adding 1

to the least-significant bit of P). If r = 1 and s = 0,

we are in a halfway case, and round up according to

the least significant bit of P. After the multiplication,

P = 126 and A = 501, with g = 5, r = 0, s = 1. Since

the high- order digit of P is nonzero, case (2) applies

and r := g, so that r = 5, as the arrow indicates in

Figure H.9. Since r = 5, we could be in a halfway

case, but s = 1 indicates that the result is in fact

slightly over 1/2, so add 1 to P to obtain the

correctly rounded product. Note that P is

nonnegative, that is, it contains the magnitude of the

result.

2.6 Floating-Point Division
 Division of a pair of FP numbers X ¼ mx *

2a and Y ¼ my * 2b is represented as X=Y ¼

(mx=my)* 2ab. A general algorithm for division of

FP numbers consists of three basic steps:

1) Compute the exponent of the result by

subtracting the exponents.

2) Divide the mantissa and determine the sign

of the result.

3) Normalize and round the resulting value, if

necessary.

4) Example Consider the division of the two

FP numbers X ¼ 1.0000 * 222 and Y

¼21.0100 * 221.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 4 | P a g e

1. Subtract exponents: 22 2 (21)

¼21.

2. Divide the mantissas: 1.0000

421.0100 ¼20.1101.

3. The result is 20.1101* 221.

Division of two FP numbers can be illustrated using

the schematic shown in Figure.

Figure: 4 Floating Point Division

III. RESULTS

Figure 5: Block Diagram of 2x2 Matrix Addition

Figure 5 and 6 shows the RTL schematic

and simulation results of 2x2 matrix addition with

floating point numbers

INPUT

:FP_A11

0.24414062 =>

(0011111001111010000000000000000

0)2 INPUT

:FP_A12

0.24414062 =>

(0011111001111010000000000000000

0)2 INPUT

:FP_A21

0.24414062 =>

(0011111001111010000000000000000

0)2 INPUT

:FP_A22

0.24414062 =>

(0011111001111010000000000000000

0)2 INPUT

:FP_B11

5.9127808E-5 =>

(0011100001111000000000000000000

0)2
INPUT

:FP_B12

5.9127808E-5 =>

(0011100001111000000000000000000

0)2 INPUT

:FP_B21

5.9127808E-5 =>

(0011100001111000000000000000000

0)2
INPUT

:FP_B22

5.9127808E-5 =>

(0011100001111000000000000000000

0)2 OUTPUT

:FP_Z11

0.24419975=>(0011111001111010000

0111110000000)2
OUTPUT

:FP_Z12

0.24419975=>(0011111001111010000

0111110000000)2
OUTPUT

:FP_Z21

0.24419975=>(0011111001111010000

0111110000000)2

OUTPUT

:FP_Z22

0.24419975=>(0011111001111010000

0111110000000)2

Table1 : Results of 2x2 matrix addition

Figure 7: Block Diagram of 2x2 Matrix

SubtractionFigure 7 and 8 shows the RTL schematic

and simulation results of 2x2 matrix subtraction

with 32 bit floating point numbers.

INPUT

:FP_A11

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A12

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A21

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A22

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_B11

5.9127808E-5 =>

(00111000011110000000000000000000

)2 INPUT

:FP_B12

5.9127808E-5 =>

(00111000011110000000000000000000

)2 INPUT

:FP_B21

5.9127808E-5 =>

(00111000011110000000000000000000

)2 INPUT

:FP_B22

5.9127808E-5 =>

(00111000011110000000000000000000

)2 OUTPU

T

:FP_Z11

-0.2440834=>

(10111110011110011111000100000000

)2 OUTPU

T

:FP_Z12

-0.2440834=>

(10111110011110011111000100000000

)2 OUTPU

T

:FP_Z21

-0.2440834=>

(10111110011110011111000100000000

)2 OUTPU

T

:FP_Z22

-0.2440834=>

(10111110011110011111000100000000

)2 Table2 : Results of 2x2 matrix subtraction

Figure 9: Block Diagram of 2x2 Matrix Multiplication

Figure 9 shows the RTL Schematic of 2x2

Matrix Multiplication. Figure 10 shows the Xilinx

simulation results of 2x2 matrix multiplication in

which the 4 elements of first 2x2 matrix are

FP_A11, FP_A12, FP_A21, FP_A22 and the 4

elements of second 2x2 matrix are FP_B11,

FP_B12, FP_B21, FP_B22. The result of this

multiplication is assigned to four otput elements

named FP_Z11, FP_Z12, FP_Z21 and FP_Z22.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 5 | P a g e

INPUT

:FP_A11

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A12

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A21

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A22

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_B11

5.9127808E-5 =>

(00111000011110000000000000000000

)2 INPUT

:FP_B12

5.9127808E-5 =>

(00111000011110000000000000000000

)2 INPUT

:FP_B21

5.9127808E-5 =>

(00111000011110000000000000000000

)2 INPUT

:FP_B22

5.9127808E-5 =>

(00111000011110000000000000000000

)2 OUTPU

T

:FP_Z11

2.8871E-5 =>

(00110111111100100011000000000000

)2 OUTPU

T

:FP_Z12

2.8871E-5 =>

(00110111111100100011000000000000

)2 OUTPU

T

:FP_Z21

2.8871E-5 =>

(00110111111100100011000000000000

)2 OUTPU

T

:FP_Z22

2.8871E-5 =>

(00110111111100100011000000000000

)2 Table:3 Result of 2x2 Matrix multiplication of

floating point numbers

Figure 10: Block Diagram of 2x2 Matrix Inverse

Figure 10 and 11 shows the RTL schematic

and simulation results of 2x2 matrix with floating

point numbers which provides the inverse of a

matrix.

INPUT

:FP_A11

5.9127808E-5 =>

(00111000011110000000000000000000

)2 INPUT

:FP_A12

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A21

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A22

5.9127808E-5 =>

(00111000011110000000000000000000

)2 OUTPUT

:FP_Z11

-9.920001E-4

=>(101110101000001000000110000000

00)2

OUTPUT

:FP_Z12

4.096=>(0100000010000011000100100

1101111)2

OUTPUT

:FP_Z21

4.096=>(0100000010000011000100100

1101111)2

OUTPUT

:FP_Z22

-9.920001E-4

=>(101110101000001000000110000000

00)2
Table4 : Results of 2x2 matrix Inverse

Figure 12: Block Diagram of 2x2 Transpose of a

Matrix

Figure 12 and 13 shows the respective RTL

schematic and simulation results of 2x2 matrix with

floating point which is producing the transpose of a

2x2 Matrix at the output.

INPUT

:FP_A1

1

5.9127808E-

5=>(00111000011110000000000000000

000)2 INPUT

:FP_A1

2

5.9127808E-

5=>(00111000011110000000000000000

000)2 INPUT

:FP_A2

1

0.24414062 =>

(00111110011110100000000000000000

)2 INPUT

:FP_A2

2

0.24414062 =>

(00111110011110100000000000000000

)2 OUTPU

T

:FP_Z11

5.9127808E-

5=>(00111000011110000000000000000

000)2 OUTPU

T

:FP_Z12

0.24414062 =>

(00111110011110100000000000000000

)2 OUTPU

T

:FP_Z21

5.9127808E-

5=>(00111000011110000000000000000

000)2 OUTPU

T

:FP_Z22

0.24414062 =>

(00111110011110100000000000000000

)2 Table5 : Results of 2x2 matrix transpose

Figure 14: Block Diagram of Determinant of a

Matrix

Figure 6: Simulation Results for Floating point 2*2 Matrix Addition

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 6 | P a g e

Figure 8: Simulation Results for Floating point 2*2 Matrix Subtraction

Figure 10: Simulation Results for Floating point 2*2 Matrix Multiplication

Figure 11: Simulation Results for Inverse of Matrix

Figure 13: Simulation Results for Floating point Matrix Transpose

Figure 15: Simulation Results for Floating point Matrix Determinant

Figure 14 and 15 shows the respective

RTL schematic and simulation results of 2x2

matrix with floating point which is producing the

determinant of a 2x2 Matrix at the output FP_Z.

INPUT

:FP_A11

5.9127808E-5 =>

(0011100001111000000000000000000

0)2 INPUT

:FP_A12

0.24414062 =>

(0011111001111010000000000000000

0)2 INPUT

:FP_A21

0.24414062 =>

(0011111001111010000000000000000

0)2 INPUT

:FP_A22

5.9127808E-5 =>

(0011100001111000000000000000000

0)2 OUTPU

T :FP_Z

-0.05960464 =>

(1011110101110100001000111111111

1)2 Table6 : Results of 2x2 matrix Determinant

IV. CONCLUSION
This project describes a system for matrix

algorithm cores generation used in image

processing applications. The system provides a

catalogue of user-customizable cores ranging in

three different matrix algorithm categories: (i)

matrix operations, (ii) matrix transforms and (iii)

matrix decomposition. The system includes a GUI

to help the users customize the cores to be

generated to meet the requirements of their

applications.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 7 | P a g e

REFERENCES
[1]. Faycal Bensaali, Abbes Amira, Reza

Sotudeh, A General Framework for

Efficient FPGA Implementation of Matrix

Product, University of Hertfordshire,

Brunel University, West London.

[2]. Syed M. Qasim, Ahmed A. Telba,

Abdulhameed Y. Almazroo, FPGA

Design and Implementation of Matrix

Multiplier Architectures for Image and

Signal Processing Applications : IJCSNS,

VOL 10 No. 2, Feb. 2010.

[3]. Michael deLorimier, Andre deHon,

Floating-Point Sparse Matrix-Vector

Multiply for FPGAs, Dept. of CS, 256-80,

California Institute of Technology,

Pasadena, CA 91125.

[4]. C. S.Wallace, “A suggestion for fast

multipliers,” IEEE Trans. Electron.

Comput., no. EC-13, pp. 14–17, Feb.

1964.

[5]. M. R. Santoro, G. Bewick, and M. A.

Horowitz, “Rounding algorithms for IEEE

multipliers,” in Proc. 9th Symp. Computer

Arithmetic, 1989, pp. 176–183.

[6]. D. Stevenson, “A proposed standard for

binary floating point arithmetic,” IEEE

Trans. Comput., vol. C-14, no. 3, pp. 51-

62, Mar.

[7]. Naofumi Takagi, HirotoYasuura, and

Shuzo Yajima. “High-speed VLSI

multiplication algorithm with a redundant

binary addition tree”. IEEE Transactions

on Computers, C-34(9), Sept 1985.

[8]. Hough, D., "Applications of the Proposed

IEEE 754 Standard for Floating-Point

Arithmetic", Computer, Vol. 13, No. 1,

Jan. 1980, pp 70-74.

