
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 62 | P a g e

Feasibility Analysis of Bilateral Filtering by General Purpose

Graphical Processing Unit Computing

For denoising digital images photographed under low light conditions

Shruti S.Agrawal
1
,

C.K.Kurve

2

Department of Electronics Engineering

Kavikulguru Institute of Technology and Science, Ramtek, Dist: Nagpur
1
shruti.agrawal06@gmail.com

Abstract—
Digital Image Processing is an evergreen area of research in the signal processing domain. Denoising of digital

images is one of the most fundamental operations that is performed in the pre-processing stage of almost all

image processing operations. This important feature makes denoising as one of the lucrative research areas

within the broad area of Digital Image Processing. With the advancement of upcoming hardware technologies,

the demand of scientific computing can be better addressed by the image processing researchers.

The clock frequency of a typical CPU has hit a ceiling at around 3.5 GHz, and the trend of the CPU market is

now shifted towards providing more numbers of processing cores rather than higher clock frequencies. Under

such scenario, it becomes necessary for a programmer to develop parallelized software algorithms, to fully

exploit the multicore features of the available hardware The latest trend in advanced computation platforms is

the General Purpose Graphical Processing Unit (GPGPU) computing, where the conventional use of GPU‟s for

gaming purpose alone is extended greatly, and exploited to solve general engineering problems of high

dimensionality. As long as any problem has the ability to be parallelized, it can be optimized for implementation

on the GPU.

Therefore, the use of GPU for implementation of the bilateral filtering [1] algorithm is proposed, since the latter

is an inherently parallelizable algorithm. As a practical application, the algorithm is proposed to be used for

analyzing its denoising of digital images photographed in low light conditions. Preliminary results for Bilateral

Filtering implementation using Matlab strongly favor the further development of this approach for the said

application [3].

Index Terms—General Purpose Graphical Processing Unit Computing, Bilateral Filtering, Digital Image

Processing, Multicore Processing

I. INTRODUCTION

Digital cameras have become a part and

parcel of every person‟s life. Cameras with a

reasonably large density of pixels are available not

only as dedicated devices, but also integrated in

mobile phones. However, the common problem with

majority of photography situations is insufficient

lighting. Distortion in the images captured in low

light primarily consists of grainy pixels. Before any

other image enhancement technique is implemented,

it is first necessary to pre-processes this image in

order to remove this granular distortion.

The bilateral filtering [2] is an edge preserving

smoothing technique, which can be implemented to

solve the above mentioned problem. However, as

discussed in Section IV, its implementation is simple

yet slow. To make this useful for processing high

resolution images, an enhancement in the

computation speed would be very favorable. A lot of

research is already done on the modification of the

conventional bilateral filtering algorithm [4]. We

propose a hardware based modification approach to

the conventional bilateral filtering algorithm, by

using the General Purpose Graphical Processing Unit

Computation. This can greatly enhance the practical

usability of the Bilateral Filtering algorithm.

II. THE GPGPU COMPUTATION PLATFORM.

General purpose graphics processing unit,

GPGPU, is the utilization of a graphics processing

unit (GPU), which typically handles computation only

for computer graphics, to perform computation in

applications traditionally handled by the central

processing unit (CPU).

The Compute Unified Device Architecture (CUDA) is

a parallel computing platform and programming

model created by NVIDIA and implemented by the

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 63 | P a g e

graphics processing units (GPUs) that they produce.

CUDA gives developers access to the virtual

instruction set and memory of the parallel

computational elements in CUDA GPUs. Using

CUDA, the latest Nvidia GPUs become accessible for

computation like CPUs. Unlike CPUs, however,

GPUs have a parallel throughput architecture that

emphasizes executing many concurrent threads

slowly, rather than executing a single thread very

quickly. This approach of solving general-purpose

(i.e., not exclusively graphics) problems on GPUs is

known as GPGPU.

On installation of the CUDA toolkit (ver. 4.2) for

Windows, it automatically integrates with a pre

installed Microsoft Visual C++ (VC++) in Visual

Studio Express 2010. Thus, the user friendly

environment of VC++ becomes the platform for

writing code that can run on the GPU. The CUDA

toolkit contains nvcc compiler, which compiles the

portions of the code to be executed on the GPU,

whereas the rest of the code is compiled by the VC++

Compiler.

Owing to this simplification of programming

procedure, the advantages of the GPU Computing can

be exploited easily by a programmer not very well

experienced with the GPU architecture. Thus the

entire focus can be laid on application algorithm

development, rather than getting familiarized with the

syntax and programming methodologies of the

CUDA programming language.

CUDA is the hardware and software architecture

introduced by NVIDIA in November 2006 to provide

developers with access to the parallel computational

elements of NVIDIA GPUs. The CUDA architecture

enables NVIDIA GPUs to execute programs written in

various high-level languages such as C, Fortran,

OpenCL and DirectCompute. The newest architecture

of GPUs by NVIDIA (codenamed „Fermi‟) also fully

supports programming through the C++ language.

Because the GPU and CPU both serve different

purposes in a computer, their microprocessor

architecture are very deferent. While CPUs currently

have up to eight processor cores, a GPU has hundreds

of cores. For example, the NVIDIA Tesla 20-series

has 448 CUDA cores.

Compared to the CPU, the GPU devotes more

transistors to data processing rather than data caching

and flow control. This allows GPU‟s to specialize in

math-intensive, highly parallel operations compared to

the CPU which serves as a multi-purpose

microprocessor. Therefore, calculations of the FDTD

algorithm are potentially much faster when executed

on the GPU instead of the CPU. This is becoming

increasingly true as graphics card vendors such as

NVIDIA and AMD are now developing more

graphics card for high performance computing (HPC)

such as the NVIDIA Tesla.

CUDA has a single-instruction multiple-thread

(SIMT) execution model where multiple independent

threads execute concurrently using a single

instruction. CUDA GPUs have a hierarchy of grids,

threads and blocks. Each thread has its own private

memory. Because of advancements in technology, the

processing power and parallelism of GPUs are

continuously increasing. CUDA‟s scalable

programming model makes it easy to provide this

abstraction to software developers, allowing the

program the automatically scale according to the

capabilities of the GPU without any change in code.

This is illustrated in Figure 1.

 Each thread has its own private memory. Shared

memory is available per-block and global memory is

accessible by all threads. This multi-threaded

architecture model puts focus on data calculations

rather than data caching. Thus, it can sometimes be

faster to recalculate rather than cache on a GPU. A

CUDA program is called a kernel and the kernel is

invoked by a CPU program. The CUDA programming

model assumes that CUDA threads execute on a

physically separate device (GPU). The device is a co-

processor to the host (CPU) which runs the program.

CUDA also assumes that the host and device both

have separate memory spaces: host memory and

device memory, respectively. Because host and device

both have their own separate memory spaces, there is

potentially a lot of memory allocation, deallocation

and data transfer between host and device. Thus,

memory management is a key issue in GPGPU

computing inefficient use of memory can

significantly increase the computation time and mask

the speed-ups obtained by the data calculations.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 64 | P a g e

Figure 1 A GPU with more cores will automatically

execute the program in less time than a GPU with

fewer cores.

III. BILATERAL FILTERING

A bilateral filter is non-linear, edge-

preserving and noise-reducing smoothing filter. The

intensity value at each pixel in an image is replaced

by a weighted average of intensity values from

nearby pixels. This weight can be based on a

Gaussian distribution. Crucially, the weights depend

not only on Euclidean distance of pixels, but also on

the radiometric differences. For example, the range

difference such as color intensity, depth distance, etc.

This preserves sharp edges by systematically looping

through each pixel and adjusting weights to the

adjacent pixels accordingly.

IV. MATLAB IMPLEMENTATION OF THE

BILATERAL FILTERING ALGORITHM

The results of Bilateral Filtering

implementation using Matlab are presented for a

color image having size of 640x930 pixels. Figure 2

shows a down sampled version of a noisy image

photographed with a 55-250 mm telephoto lens

mounted on a 12.2 Megapixel Cannon DSLR camera.

The shutter speed being mandatorily set to very fast

(to capture the sport event), and higher ISO settings

to obtain optimum exposure resulted in a grainy

image.

 On implementing the bilateral filter, the noise is

reduced to a great extent, as seen clearly in Figure 3.

 The edge preserving nature of the bilateral filter can

be clearly seen in Figure 4, which is magnified view

of the Figure 2, and comparing it with Figure 5,

which is a magnified view of the Figure 3.

 The total time elapsed was measured to be 36.24

second using the matlab „tic‟ ‟toc‟ commands. This is

a reasonably large duration of time, and hence the

faster implementation methodology is needed for

bilateral filtering.

Figure 2: Original digital image with granular noise.

Figure 3: Denoised Image with the Bilateral Filtering

Algorithm.

Figure 4: Magnified view of the Figure 2.

http://en.wikipedia.org/wiki/Noise_reduction
http://en.wikipedia.org/wiki/Smoothing

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 65 | P a g e

Figure 5 : Magnified view of the Figure 3.

V. CONCLUSION

Although the conventional bilateral filtering

algorithm dates back to more than a decade old,

however with the advent of faster processing

techniques like GPGPU Computing, once again

bilateral filtering becomes an interesting and useful

topic for research and development owing to its

parallelizable nature.

ACKNOWLEDGMENT

The author acknowledges the timely

guidance and support of Prof. C.K.Kurve.

REFERENCES
[1] Singhal, N. ; Man Hee Lee ; Sungdae Cho ; ,

“Design and Performance Evaluation of Image

Processing Algorithms on GPUs”, IEEE

Transactions on Parallel and Distributed

Systems, (Volume:22 , Issue: 1), January-

2011

[2] Agarwal, D. et. al, “Acceleration of Bilateral

Filtering Algorithm for Manycore and

Multicore Architectures” at Parallel Processing

(ICPP), 41st International Conference, Sept

2012

[3] Xiangdong Zhang et. al, “Enhancement and

noise reduction of very low light level images”

IEEE 21st International Conference on Pattern

Recognition, Tsukuba 2012.

[4] “Bilateral Normal Filtering for Mesh

Denoising” from Youyi Zhenget.al. at

Visualization and Computer Graphics, IEEE

Transactions on (Volume:17,Issue:10)

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Singhal,%20N..QT.&searchWithin=p_Author_Ids:37400363000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Man%20Hee%20Lee.QT.&searchWithin=p_Author_Ids:37537976400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sungdae%20Cho.QT.&searchWithin=p_Author_Ids:37407418900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kim,%20C.W..QT.&searchWithin=p_Author_Ids:37985222000&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5644739
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Agarwal,%20D..QT.&searchWithin=p_Author_Ids:38476734600&newsearch=true

