
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology, Lonara Nagpur. 25 | P a g e

VLSI Architecture for Neural Network

Dhananjay Kumar
1
, Dileep Kumar

2
, J.R.Shinde

3
, Amit Kumar

4
, Vineet Kumar

5

1
(Department of Electronics Engineering, RTM University Nagpur, INDIA

Email: dkraj88@gmail.com)
2
 (Department of Electronics Engineering, RTM University Nagpur, INDIA

Email: dileepjaiswal41@gmail.com)

ABSTRACT
In this paper a hardware implementation of an artificial neural network on Field Programmable Gate Arrays

(FPGA) is presented. For the neural network based instrument prototype in real time application, conventional

specific VLSI neural chip design suffers the limitation in time and cost. With the low precision artificial neural

network (ANN) design, FPGAs have higher speed and smaller size for real time application than the VLSI

design. In addition, artificial neural network (ANN) based on FPGAs has fairly achieved with classification

application. The programmability of reconfigurable FPGAs yields the availability of fast special purpose

hardware for wide applications. Its programmability could set the conditions to explore new neural network

algorithms and problems of a scale that would not be feasible with conventional processor. The goal of this

work is to design the optimal hardware for neural network (using FPGA). Neural Network system architecture

designing using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and farther

transfer to FPGA board thus will provide an optimal solution for implementation of Neural Network system.

Keywords - Artificial neural networks (ANNs), Field Programmable Gate Array (FPGA), Neuron Architecture,

Sigmoid Activation Function, Very High Speed Integrated Circuits Hardware Description Language (VHDL).

I. INTRODUCTION

Artificial neural networks (ANN) have found

widespread deployment in a broad spectrum of

classification, perception, association and control

applications [1].

The advance in high speed computing has proved

through simulation the capability of Artificial Neural

Networks (ANN) to map and classify nonlinear

systems. For the Real time applications are possible

only if low cost high-speed neural computation is

made realizable. Towards this goal numerous works

on implementation of Neural Networks (NN) have

been proposed [2].

 Artificial Neural Networks have been mostly

implemented in software; this has been benefits,

since the designer does not need to know the inner

working in neural network elements, Most of the

work done in this field until now consists of software

simulations, investigating capabilities of ANN

models or new algorithms. But hardware

implementations are also essential for applicability

and for taking the advantage of neural network’s

inherent parallelism.

There are analog, digital and also mixed system

architectures proposed for the implementation of

ANNs. The analog ones are more precise but difficult

to implement and have problems with weight storage.

Digital designs have the advantage of low noise

sensitivity, and weight storage is not a problem. With

the advance in programmable logic device

technologies, FPGAs has gained much interest in

digital system design. They are user configurable and

there are powerful tools for design entry, syntheses

and programming.

ANNs are biologically inspired and require parallel

computations in their nature. Microprocessors and

DSPs are not suitable for parallel designs. Designing

fully parallel modules can be available by ASICs and

VLSIs but it is expensive and time consuming to

develop such chips. In addition the design results in

an ANN suited only for one target application.

FPGAs not only offer parallelism but also flexible

designs, savings in cost and design cycle.

II. ARTIFICIAL NEURON

Artificial neural networks are inspired by the

biological neural systems. The transmission of

signals in biological neurons through synapses is a

complex chemical process in which specific

transmitter substances are released from the sending

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology, Lonara Nagpur. 26 | P a g e

side of the synapse. The effect is to raise or lower the

electrical potential inside the body of the receiving

cell. If this potential reaches a threshold, the neuron

fires. It is this characteristic of the biological neurons

that the artificial neuron model proposed by

McCulloch Pitts attempts to reproduce. Following

neuron model shown in Fig. 1 is widely used in

artificial neural networks with some variations.

The artificial neuron given in this figure has N

inputs, denoted as p1, p2...pN. Each line connecting

these inputs to the neuron is assigned a weight,

denoted as w1, w2,…, wN respectively. The activation,

a, determines whether the neuron is to be fired or not.

It is given by the formula.

 a = (1)

 Fig.1. Structural diagram of a neuron

 A negative value for weight indicates an inhibitory

connection while a positive value indicates excitatory

connection.

 The output, Y of the neuron is given as:

 Y= f(a) (2)

 Originally the neuron output function f(a) in

McCulloch Pitts model was proposed as threshold

function, however linear, ramp, and sigmoid

functions are also used in different situation. The

vector notation

 a = w
T
 p (3)

it can be used for expressing the activation of a

neuron. Here, the jth element of the weight vector of

w is wj. Both of these vectors are of size N. A

Neuron-computing system is made up of artificial

neurons and a huge number of interconnections

between them.Fig.2 show architecture of feed-

forward neural network [5].

 Fig.2. Layered feed-forward neural network

In layered neural network, the neurons are organized

in the form of layers. The neurons in a layer get

inputs from the previous layer and feed their output

to the next layer. These types of networks are called

feed-forward networks.

 Output connections from a neuron to the same or

previous layer neurons are not permitted. The input

layer is made of special input neurons, transmitting

only the applied external input to their outputs. In a

network, if there are input and output layers only,

then it is a single layer network. Networks with one

or more hidden layers are called multilayer networks

[6].

III. OVERVIEW OF VHDL
 VHDL is language meant for describing digital

electronics system. In its simplest form, the

description of component in VHDL consists of an

interface specification and an architectural

specification. The interface description begins with

the ENTITY keyword and contains the input- output

ports of the component. The name of the component

comes after the ENTITY keyword and is followed by

IS, which is also a VHDL keyword. The description

of the internal implementation of an entity is called

an architecture body of the entity. There may be

number of different architecture bodies of an

interface to an entity corresponding to alternative

implementations that perform the same function.

 After describing a digital system in VHDL,

simulation of the VHDL code has to be carried out

for two reasons. First, we need to verify whether the

VHDL code correctly implements the intended

design. Second, we need to verify that the design

meets its specification. The simulation is used to test

the VHDL code by writing test bench model. A test

bench model that is employed to exercise and verify

the correctness of a hardware model and it can be

described in the same language.

 Some synthesis tools are capable of implementing

the digital system described by VHDL code using a

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology, Lonara Nagpur. 27 | P a g e

PGA (programmable gate array) or CPLD (complex

programmable logic devices), they are more flexible

and more versatile and can be used to implement a

complete digital system on a single chip. The user

can program the functions realized by each logic cell

and the connections between the cells. Such PGAs

are often called FPGAs (field programmable logic

array) [7], [8].

IV. PROPOSED DESIGN
 The proposed design is VLSI architecture for

neural network. It Consist of neurons architecture

design, activation function problem solving and

artificial NN design which consist of two layers.

4.1 Neurons Architecture

 The processing element of an ANN is Neuron. A

Neuron can be viewed as processing data in three

steps, the weighting of its input values, the

summation of them all and their filtering by sigmoid

function. The summation can be calculated by a serial

accumulation. For the weighted input to be calculated

in parallel using conventional design techniques, a

large number of multiplier units would be required.

To avoid this, Multiplier/Accumulator architecture

has been selected. It takes the input serially,

multiplies them with the corresponding weight and

accumulates their sum in register. The processes are

synchronized to clock signal. The number of clock

for a neuron to finish its work, equals to the number

of connections from the previous layer. The

accumulator has a load signal, so that the bias values

are loaded to all neurons at start-up. Fig. 3 shows the

proposed neuron design.

 Fig. 3 Neuron architecture

4.2 Activation Function

 The most important parts of a neuron is its

activation function. The nonlinearity of the

activation function makes it possible to approximate

any function. In the hardware implementation

concept of neural networks, it is not so easy to

realize sigmoid activation functions [9].

Special attention must be paid to an area-efficient

implementation of every computational element

when implementing large ANNs on digital hardware.

This holds true for the nonlinear activation function

used at the output of neurons.

A common activation function is the sigmoid

function

 Y = (4)

 Efficient implementation of the sigmoid function

on an FPGA is a difficult challenge faced by

designers. It is not suitable for direct implementation

because it consists of an infinite exponential series.

In most cases computationally simplified

alternatives of sigmoid function are used.

Direct implementation for non-linear sigmoid

transfer functions is very expensive. There are two

practical approaches to approximate sigmoid

functions with simple FPGA designs. Piece-wise

linear approximation describes a combination of

lines in the form of y= (ap + b) which is used to

approximate the sigmoid function. Especially if the

coefficients for the lines are chosen to be powers of

two, the sigmoid functions can be realized by a

series of shift and add operations. The second

method is lookup tables, in which uniform samples

taken from the centre of a sigmoid function can be

stored in a table for look up. The regions outside the

centre of the sigmoid function are still approximated

in a piece-wise linear fashion.

This research presents an approximation approach

to implement sigmoid function. A simple second

order nonlinear function can be used as an

approximation to a sigmoid function. The structural

diagram of the approximated sigmoid function

implementation is shown in Fig. 4.

 Fig. 4 structural diagram for sigmoid function

4.3 Layer Architecture

In fist Implementation of an ANN layer they take

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology, Lonara Nagpur. 28 | P a g e

an input from their common input line, multiply it

with the corresponding weight from their weight

ROM and accumulate the product. If the previous

layer has 3 neurons, present layer takes and processes

these inputs in 3 clock cycles. After these 3 clock

cycles, every neuron in the layer has its net values

ready. Then the layer starts to transfer these values to

its output one by one for the next layer to take them

successively by enabling corresponding neuron’s

three-state output. The block diagram of a layer

architecture including 3 neurons is shown in Fig. 5.

Since only one neuron’s output have to be present at

the layer’s output at a time, instead of implementing

an activation function for each neuron it is

convenient to implement one activation function for

each layer. In this layer structure pipelining is also

possible. A new input pattern can enter the network

while another is propagating through the layers.

 Fig.5 Block diagram of a layer consist of three neuron

A second Implementation of a fully parallel neural

network is possible in FPGAs. A fully parallel

network is fast but inflexible. Because, In a fully

parallel network the number of multipliers per neuron

must be equal to the number of connections to this

neuron. Since all of the products must be summed,

the number of full adders equals to the number of

connections to the previous layer minus one. For

example in a 3-1 network the output neuron must

have 3 multipliers and 2 full adders. So, different

neuron architectures have to be designed for each

layer. Because the multipliers are most resource

using elements in a neuron structure, a second

drawback of a fully parallel network is gate resource

usage. Fig. 6 show single layer artificial neural

network with three input nodes and one output node.

 Fig. 6 Artificial neural network design

V. CONCLUSIONS
 This paper has presented the idea of

implementation of neural networks using FPGAs.

The resultant neural networks are modular, compact,

and efficient and the number of neurons, number of

hidden layers and number of inputs are easily

changed.

The VHDL-FPGA combination is shown to be a

very powerful embedded system design tool, with

low cost, reliability, and multi-faceted applications.

As FPGAs allow the hardware design via

configuration software control, the improvement of

circuitry design is just a matter of modifying,

debugging and downloading the new configuration

code in a short time.

Future work involves estimating the maximum

size of ANNs in modern FPGAs. The main points are

the size and parameter stability of multipliers and the

number of interlayer interconnections. The first

defines mainly the required area resources and the

second defines the required routing.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014)

 Jhulelal Institute Of Technology, Lonara Nagpur. 29 | P a g e

REFERENCES

[1] B. Widrow, D. E. Rumelhart, and M. A.
Lehr, “Neural networks: applications
in industry, business and science,”
Communications of the ACM, vol. 37, no. 3,
pp. 93-105, 1994.

[2] Muthuramalingam, S. Himavathi, and E.
Srinivasan, “Neural network implementation
using fpga: issues and application,” The
International Journal of Information
Technology, vol. 4, no. 2, pp.86-92, 2008.

[3] M. T. Tommiska, “Efficient digital
implementation of the sigmoid function for
reprogrammable logic,” IEEE Proceedings,
Computers and Digital Techniques, vol.
150, no. 6, pp. 403- 411, 2003.

[4] Savran and S. Ünsal, “Hardware
implementation of a feedforward neural
network using FPGAs’,” Ege University,
Department of Electrical and Electronics
Engineering, 2003.

[5] S. Haykin, Neural Networks-a
Comprehensive Foundations, Second
Edition, ISBN: 0132733501, 1998.

[6] S. Rai and A. P. Singh, “A review of
implementation techniques for artificial
neural networks,” University School of
Information Technology, GGS Indraprastha
University, Delhi, 2006.

[7] S. P. J. V. Rani and P. Kanagasabapathy,
“Design of Neural Network on FPGA,”
International Conference on VLS, USA,
2004.

[8] J. Hamblen and M. Furman, Rapid
prototyping of digital systems, Kluwer
Academic Publisher 2nd Edition, Boston,
2001.

[9] M. Avcýand T. Yýldýrým, “Generation of
tangent hyperbolic
sigmoid function for microcontroller based
digital implementation of neural networks,”
in Proc. International XII. Turkish
Symposium on Artificial Intelligence and
Neural Networks, 2003.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192

