
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 76

An Approach to Attain Reliable Query Processing by Obstructing

SQL Injection Attack

1Pradeep Natani, 2Dolly Chandani, 3Kishor Kumar Mali, 4Meenakshi

Kothari, 5Shweta Agrawal
1

Asst. Professor, Department of Computer Sc., Poornima Institute of Engineering and Technology, Jaipur

2
Asst. Professor, Department of Information Tech., Poornima Institute of Engineering and Technology, Jaipur

3,4,5
Student-B.Tech., Department of Computer Sc., Poornima Institute of Engineering and Technology, Jaipur

Abstract— In this paper we present an overview of

SQL Injection Attacks that is a major concern in

maintaining the security of the web

applications. There are so many techniques to

prevent intrusions that can exploit the sensitive

data stored in the database but cannot be

implemented everywhere. We are presenting a

technique using Hash Function to solve the SQLIA

problem.

Keywords— Authentication Bypass, Intrusion,

Database, Hash Function, SQLIA

I. INTRODUCTION

SQLIA –Structured Query Language + Injection+

Attack SQL is a language used for creating the

database and injection means to inject something

which can make changes and attack means try to

destroy or remove. In overall, SQLIA is a

technique through which attacker inserts an

unauthorized SQL statement through a SQL data

channel. SQLIA is generally imposed on web

applications by the attackers or third party to identify

the confidential information or to make changes in the

database or to gain the control on the application and

run according to their wish. SQLIA can cause great

impact on web applications and also affect the

organization to which that web application is

belong. In order to run the web application smoothly

over internet or in any other network like LAN,

WAN, there is basic need to prevent them with SQLIA.

There are so many methods to prevent the web

application from SQLIA such as Validation for input

values, checking of input data by generating parse

tree, using prepared statement, using hash value but

all have some limitations either in terms of time

required to execute or some have implementation

constraint and none of them provide 100% efficient

way to prevent web application from SQLIA.

II. GENERAL METHODOLOGIES FOR SQLIA

There are different ways of intrusion that are

basically used by attackers to get into the database

and make the undesired changes in it. For a successful

SQLIA the attacker used to append a command that

is syntactically right with the original SQL query.

The classification of

SQLIAs in accordance to [1] [3] be presented.

Tautologies: In this type of attack, SQL tokens

are injected in the conditional query statement

which is always evaluated as true. This type of

attack used to bypass authentication control and

exploits the vulnerable input field which use WHERE

clause.

"SELECT * FROM login WHERE uname =

'pradeep' and password ='natani' OR '1 '='1’ as

the tautology

statement (1=1) has been added to the query statement

so it is always true.

Illegal/Logically Incorrect Queries: When an

incorrect query is fired, the resultant SQL error

message is helpful to attack on vulnerable areas of

database. Attacker injects junk input or SQL tokens in

query to produce syntactic error, type mismatches, or

logical errors. For example-

Injected query : String query = "insert

into mysql.login values(\'"+id+"\')";
Error message showed: Error code 1366, SQL

state S1000: General error message from server:

"Incorrect integer value: 'xx' for column 'uid' at row

1"From the message error we can find out name of

table and fields: name; Employee; id. By the gained

information attacker

can organize more strict attacks.

Union Query: By this technique, attackers add

injected query to the original query by the word

UNION and then can get data about other tables from

the application. For example-

select uname from login where id='usfaujdar' and

password='' union all select password from login--'
This will join the result of the original query with all

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 77

Sel
ect

* Fr
o

m

lo
gi

n

wh
ere

user
nam

e

= ‘x
yz

’

a
n

d

pass
wor

d

= ‘mypas
sword’

the passwords.

Piggy-backed Queries: By this attack, intruders

exploit database by using the query delimiter, like ";",

to append extra query to the original query. On

succeeding database receives and execute a multiple

distinct queries. Usually the initial query is

legitimate query, while the other queries could be

illegitimate. Hence the attackers can affect the SQL

commands easily. In the given example, intruder

injects " 0; drop table user" into the pin input field

instead of logical value. Then the application would

generate the query:

SELECT * FROM login; DROP TABLE emp;
Due to ";" terminator, database accepts both queries

and executes them. The later query is not the desired

one and

can drop emp table from the database. Moreover, some

databases do not require special separation characters

in multiple distinct queries. Hence to detect this attack,

scanning of special characters is not an efficient

solution.

III. PROPOSED TECHNIQUE

In previous topic we have seen that in SQLIA hacker

changes the structure of database query [2] [4].

The database query is fix for application means what

&

how many queries are required for particular

application. We only required valid input from user

not any database query which changes our database

structure.

Solution is that we storing the valid database query &

then compare with dynamic generated database query.

If dynamically generated database query is match

with already stored query then its ok otherwise there

is a SQLIA.

Method proposed is using linked list representation.

1) Using linked list representation:
We store all valid queries in list representation form.

Each query is store in singly linked list to store the

addresses of singly linked list we use doubly linked list.

The structure of a node of singly linked list is shown in

the figure 1 as shown-

Figure 1- Node Structure of Link List

Now to store valid queries & dynamically generated

queries in list form we follow some steps:

STEP 1: Convert queries into tokens.

STEP 2: Separation of tokens & Maintain Sequence

of token.

STEP 3: Transform tokens into corresponding

integer

value.

Multiply ASCII value to corresponding its position.

Example:

Select * from login where username=’xyz’

and password=’mypassword’

Step 1: Figure 2(a)
tokens

‘Select’ ‘*’ ‘from’ ‘login’ ‘where’

‘username’ ‘=’ ‘‘xyz’’ ‘and’
‘password’ ‘=’ ‘mypassword’

Step 2: Figure 2(b)

Step 3: Figure

2(c)

Transform each string into corresponding integer

value. For SELECT S=83 E=69 L=76 E=69

C=67 T=84; POSTION S=1 E=2 L=3 E=4 C=5 T=6;

83*1+69*2+76*3+69*4+67*5+84*6=1564

Figure 2- Query after token separation

The corresponding integer values have been arranged in

the form of link list as shown in figure 3

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 78

User_name Password H_Username H_Password
Kishor k@k.com 56 70
Pradeep P12345_n 29 47

Xyz Welcome99 74 48

User_name Password H_User_Password

Kishor k@k.com 83
Pradeep P12345_n 34
Xyz Welcome99 55

Figure 3-Query Translation to its integer sequence

We already know the no of tokens of incoming query so

we combine all queries of same no of tokens as in Figure

4:

Figure 4: Grouping of query having 3 tokens [2] However,

there is a disadvantage of this method. By using

this method, if the number of tokens is same as present

in the stored database, then it will not identify the SQLIA.

2) Using hash table method:

When user inserts values into database table we

calculate the hash value for that.

Hash Value can be calculated by transforming the
string
into corresponding integer value.

We add two extra columns with the database table one

for username hash value & other for password shown in .

Whenever user enters the username & password we

calculate their hash value dynamically. Now these

hash value is compare with the already calculated hash

value. If both are equal then ok otherwise its SQLIA as

shown in figure 5.

Figure 5: Proposed Hash Scheme for Detecting SQLIA

& Prevent Them[1]

Example : CREATE TABLE login(User_name
varchar(20), Password varchar(20), H_Username
integer, H_Password integer);

LOGIN TABLE: (Table 1)

Table 1: User Login

table

In Table 1, there are 4 field in database instead of 2.

when database grows it is not better way to check all

hash values of username & password .

So to increase the efficiency we EX-OR the two field

values & then store only one field into database table.

Modified Query- CREATE TABLE login(User_name

varchar(20), Password varchar(20), H_User_Password

integer);

H_User_Password = H_Username EX-OR

H_Password

EFFICIENT LOGIN TABLE: (Table 2)

Table 2: Modified User Login Table

mailto:k@k.com
mailto:k@k.com

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 79

This is efficient way to reduces one field of table as

shown in table 2.

IV. CONCLUSIONS
 The linked list representation is not much

efficient & it is also time consuming it follows some

steps to check SQLIA so new approach that is based on

the hash method of using the SQL queries, which is

much secure and provide the prevention from the

attackers SQL

REFERENCES

[1] Mayank Namdev, Fehren Hasan, Gaurav

Shrivastav. “Review of SQL Injection

Attack and Proposed Method for Detection

and Prevention of SQLIA”, International

Journal of Advanced Research in

Computer Science and Software Engineering,

Volume 2, Issue 7, July 2012.

[2] Shaukat Ali, Azhar Rauf and Huma Javed ,

SQLIPA: An Authentication Mechanism

Against SQL Injection. European Journal of

Scientific Research ISSN 1450-216X Vol.38

No.4 (2009), pp 604-611.

[3] William G.J.Halfond and Alessandro Orso

“AMNESIA:Analysis and Monitoring for

Neutralizing SQL-Injection Attacks”.
[4] Dibyendu Aich “ Secure Query Processing

by Blocking SQL
[5] injection”, NIT, Rourkela May 2009.

