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ABSTRACT 
This paper deals with the linear oscillation of the system about the positions of equilibrium for small 

eccentricity. We will try to find the condition of equilibrium position.  
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I. INTRODUCTION 
 The effect of Earth's oblateness and 

magnetic force on the motion of a system of two 

artificial satellites connected by light, flexible and 

in extensible string. The physical properties of the 

celestial bodies is generally faced with two types of 

problems namely gravity gradient stabilization and 

altitude stabilization of the satellites. Gravity 

gradient stabilization means that the portion 

carrying the instrument in the satellites is always 

pointed towards the surface of the earth. This 

resulted in the formulation of the problem of the 

passive altitude stabilization of the satellites in the 

orbit. We come to know that,  
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Where  

e  Eccentricity of the orbit  

v True anomaly of the centre of mass  

    

By determining the motion of the other satellite, we 

apply the identity as  

   

 02211   mm  

Where  

   

 21, Radius vector of 21,mm  

There are three types of motions are given by  

(i) Free motion  

(ii) Constrained motion  

(iii) Evolutional motion  

(Combination of free and constrained motion)  

 

Mathematical Approach  

In the case of constrained motion  

We apply  
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We transform the polar form by replacing  
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Diff 
H
- (2) w.r. to v we obtain   
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          ………. (3)  

We have the system; when centre of mass moves 

along keplerian elliptical orbit in Nechville's co-

ordinate then 
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Multiplying (5) by sin and (6) by cos  and 

the subtracting first from the second  

 
 

This equation determines undetermined Lagrange's 

multiplier.  

The motion will be constrained as long as  

0,)( t  i.e 0,)(  t  

It means the particle will start moving with in the 

circle of variable radius  
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Now, the equation of motion of the system is given 

by  

   cos.sinsincos1coscossin)cos1(5 2

0 veveiAveA     

……… (9)  

 This is a second order differential equation 

with periodic term from equation (9) eccentricity is 

very small that implies 0e and there exists 

stable positions of equilibrium for equatorial orbit 

)0( i given by  
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 We focus on first case as the oscillation of 

the system about the stable position of equilibrium.  
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e = to be taken as a small parameter  

Replacing   
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There fore we observe that linear string the 

equation of motion w.r. to  and 
1 in case of 

equatorial orbit )0( i we have  
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Suppose  
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II. CONCLUSION: 
We obtained that the linear oscillation of the 

system about the position of equilibrium.  
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