
Anusha Peluri Journal of Engineering Research and Application                                    www.ijera.com    

ISSN : 2248-9622 Vol. 9,Issue 10 (Series -III) October 2019, pp 41-46 
 

 
www.ijera.com            DOI: 10.9790/9622- 091003414641|P a g e  

 

 

 

 

 

 

 

Design and Implementation of Decimal Floating-Point Multiplier 

for Multimedia Applications 
 

Anusha Peluri
1
, S Srilali

2
, B Subrahmanyeswara Rao

3 

SwarnandhraCollegge of Engineering & Technology
1,2,3

 

 

Abstract-Decimal floating point (DFP) arithmetic is important in various applications such as currency 

conversion, billing, insurance, banking etc., as it is able to produce precise decimal fractions and minimize 

manual calculations that perform decimal rounding. But binary floating-point arithmetic fails to provide correct 

decimal rounding and exact decimal fractions such as 0.10,0.0418. A multiplier is one of the main components 

in most digital and high-performance systems such as digital signal processors, microprocessors and Finite 

Impulse Response (FIR) filters etc. As technology advances, many scientists have tried and are trying to design 

multipliers which provide either of the following- high speed, low power consumption and hence less area or 

even combination of them in multiplier. 

Multiplication is also an important operation in decimal operation. This is aims to implement Binary integer 

decimal based floating point multiplier using the fastest adder. The maximum time of multiplication is 

consumed in accumulating the partial products and at the final stage of addition to get the significant product. so 

the multiplication time can be reduced if the partial products are accumulated with the help of fast adders. In 

this, the binary encoding for DFP numbers also known as Binary Integer Decimal (BID) format has also been 

implemented.where binary radix of 2 of 2 is used. Since BID encoding stores the significant as an unsigned 

binary integer for effective reuse of existing binary hardware. In this thesis, a hardware design is presented that 

multiplies BID encoded DFP numbers. An optimized technique that in parallel with significant multiplication is 

used to detect if rounding is needed and to find the number of product digits that are needs to be rounded. In 

this, both for significant multiplication and rounding, a single binary hardware along with carry save feedback is 

used. To design a BID multiplier, the partial products are generated using radix-8 algorithm, then array 

multiplier are used to accumulate partial products and different adders like ripple carry adder, carry select adder 

or carry look ahead adders are used at final stage to obtain the result. Then multiplier is synthesized and 

simulated using Xilinx ISE 14.5 targeting Spartan 6 FPGA device. Then their results in the terms of area and 

delay are compared for BID multiplier using different adders. 

Index Terms-Binary Integer Decimal (BID),Decimal Floating Point (DFP),Finite Impulse Response (FIR), 

Floating-Point, Multimedia, Multiplication. 

----------------------------------------------------------------------------------------------------------------------------- --------- 

Date of Submission: 22-10-2019                                    Date Of Acceptance: 06-11-2019 

--------------------------------------------------------------------------------------------------------------------------- ------------ 

 
I. INTRODUCTION 

Multipliers play a key role in many high-

performance systems. As the technology advances, 

the demand of high- speed digital systems increase, 

or we can say the demand of high-speed multiplier 

increases because the multiplier is a main 

component in every digital system. Multipliers are 

used as small blocks in large digital systems like FIR 

filters, microprocessors, digital signal processors, 

communication systems etc. So, to find performance 

of a large digital system is measured by the 

performance of the multiplier because the multiplier 

is mainly the slowest element in the large systems; 

consequently, multiplication dominates the 

execution time of most DSP algorithms, so a high-

speed multiplier is always needed. In comparison to 

other operations in an ALU, the multiplier also uses 

more power[1]. Thus, scientists have always been 

trying to design a multiplier which utilizes less 

power, time and area and increases speed. 

Multiplication is such a mathematical operation in 

which a numberi.e. multiplicand is added to itself a 

given number of times as indicated by another 

number i.e. multiplier to form a result. 

A digital circuit used to multiply two 

numbers is called a multiplier. As in mathematics, 

multiplication includes shifting and adding the 

partial products. The same approach is used here in 

digital multipliers. For unsigned number 

multiplication, AND gates are utilized for generating 

the partial products and full adders are utilized for 

adding those generated partial products[2], [3]. To 

multiply signed numbers, the negative numbers 

should be first converted into its 2‟s complement 

representation to make all the partial products 

positive. Digital multipliers can be classified into 

RESEARCH ARTICLE     OPEN ACCESS 



Anusha Peluri Journal of Engineering Research and Application                                    www.ijera.com    

ISSN : 2248-9622 Vol. 9,Issue 10 (Series -III) October 2019, pp 41-46 
 

 
www.ijera.com            DOI: 10.9790/9622- 091003414642|P a g e  

 

 

 

 

 

three types i.e. parallel, serial and serial-parallel 

multiplier. Both the inputs are entered serially in a 

serial multiplier. Such an implementation will be led 

to lesser area and lesser hardware cost and also 

lower power consumption. But the major drawback 

is its poor speed, because the inputs are entered 

serially. Now the speed can be increased by using 

parallel multiplier implementation because operation 

is carried out in parallel. Butit is more complex as 

compared to serial multipliers as it occupies larger 

area. Also, its power consumption is higher. Parallel 

multipliers further can be classified into two types 

i.e. array multipliers[4]. For carrying out fast 

multiplication. To take benefit of small area of serial 

multiplier and high-speed operation of parallel 

multiplier, serial-parallel multipliers are used. In 

serial-parallel multipliers, one operand is entered 

serially while other is stored in parallel. This 

requires less area and enhances the speed of the 

multiplier. The numbers can be represented in two 

ways fixed point and floating-point representations. 

The representation in which digits after and before 

the decimal is fixed is called fixed point number 

representation. But the decimal point can float in 

floating point representation, hence given the name 

floating point[5], [6]. To represent extremely large 

and small values like distance between sun and earth 

or mass of electron, floating point numbers are used. 

To achieve better accuracy and larger range floating 

point representation is used although it is slower 

than fixed point representation. 

 

 
Fig.1. BID Multiplication Technique 

 

Decimal floating point (DFP) number 

systems can be utilized to represent a wide variety of 

decimal numbers and do manual calculations that 

perform decimal rounding. However advanced PC‟s 

performs binary arithmetic, which have 

imperfections to represent and round decimal 

numbers i.e. it can neither give correct decimal 

rounding nor precise represent many decimal 

fractions. Due to which, errors from Binary floating 

point (BFP) arithmetic can combine to form a yearly 

billing error of over $6 million for a vast billing 

system. So, a variety of business applications that 

can’t endure errors because of BFP arithmetic have 

traditionally utilized software to perform DFP 

calculations. As the interest for decimal floating-

point arithmetic is growing, the IEEE P754 Draft 

Standard for floating point arithmetic incorporates 

details for decimal floating-point arithmetic. For 

decimal floating-point numbers, two encodings are 

specified by IEEE P754 Draft. One decimal floating 

point (DFP) encoding is specified in IEEE P754. It 

represents its mantissa as a binary integer and is 

called as binary integer decimal encoding. This 

encoding reuses the hardware of existing high-speed 

binary arithmetic circuits. Second, densely packed 

decimal encoding is used. But it requires more 

expensive hardware. A floating-point multiplier has 

three main units: exponent unit, sign unit, mantissa 

unit, which works in parallel and a normalization 

unit. 

As scientists always tried to achieve fast 

speed, low power, small equipment's in any 

equipment. To achieve fast speed, the delay from 

input can be decreased. To reduce area, sizes of 

transistors can be reduced. And power dissipation 

will automatically decrease with area. But there is a 

trade-off between these parameters, as we know we 

cannot improve all of them simultaneously. To 

estimate performance of a system, sometimes power 

delay product parameter is used. 

 

II. LITERATURE REVIEW 
S.G. Navarro et.al [7] presented the first 

complete design of a Binary Integer Decimal (BID)-

based Decimal Floating Point (DFP) multiplier to 

achieve effectively adjusted results when two IEEE 

754-2008 decimal64 numbers are multiplied. This 

multiplier works on Binary Integer Decimal (BID) 

encoded decimal floating-point (DFP) numbers[8]. 

This design showed that BID multiplication can be 

proficiently executed in hardware rather than a 

software implementation. This multiplier can 

likewise be shared to perform BFP multiplication. 

This design has variable latency to take advantage of 

the fact that multiplication results are not often 

adjusted. For significant multiplication and 

rounding, a single binary multiplier along with carry 

save feedback was utilized to reduce the area and 

critical path delay. Optimizations have decreased the 

BID multiplier’s critical path delay and area. 

C. Tsen et.al[9] proposed a hardware design 

for a rounding unit for 64-bit DFP numbers that 

utilizes the Binary integer decimal encoding (BID). 

This design evaluates area, critical path delay and 

latency for combinational and pipelined designs. A 

55-bit by 54-bit binary multiplier consumed more 

BID Decoder BID Decoder

BID Encoder

Multiplier/Rounding

A B

Z



Anusha Peluri Journal of Engineering Research and Application                                    www.ijera.com    

ISSN : 2248-9622 Vol. 9,Issue 10 (Series -III) October 2019, pp 41-46 
 

 
www.ijera.com            DOI: 10.9790/9622- 091003414643|P a g e  

 

 

 

 

 

than 86% of the rounding unit‟sarea, which further 

could be shared with a double-precision binary 

floating-point multiplier.  

S.G. Navarro et.al [7] presented an IEEE 

P754-compliant multiplier which works on those 

values that utilize the binary encoding of DFP 

numbers which is also called as the Binary Integer 

Decimal (BID) encoding. A single high-speed binary 

hardware was utilized by this multiplier that has 

variable latency and enhanced for the basic case in 

which the product did not should be rounded. In this 

multiplier, an optimized method was utilized in 

parallel with the significant multiplication that finds 

if rounding is required and calculates the number of 

product digits that should have been adjusted. In this 

design, to multiply the significands and round the 

product, a single multiplier is used. 

B.J. Hickmann et.al [10] introduced a 

parallel decimal floating-point multiplier. This 

parallel DFP multiplier provides low latency and 

high throughput. This design utilized alternate 

decimal digit encodings to decrease area and delay.  

Ganesh et.al[11] proposed two plans for 

fixed-point decimal multiplication that utilized 

decimal carry-save addition to decrease the critical 

path delay. Initial, multiplier that utilizes decimal 

carry-save addition in the iterative portion of the 

configuration and stores a smaller number of 

multiplicand multiples was displayed.  

Y. Xie et.al [12] proposed a new redundant 

booth encoding scheme, in which the idea was to 

polarize two adjacent booth encoded digits to 

directly form an RB partial product to avoid the hard 

multiple of high radix booth encoding without 

incurring any correction vector. 

Nguyen et.al[13] proposed a hardware 

design of a joined decimal and binary floating- point 

multiplier complaint with IEEE P754-2008 Floating-

point Standard.  

C. Tsen et.al [14] introduced an innovative 

algorithm and hardware design of a DFP adder. This 

adder performs subtraction and addition on 64-bit 

operands that utilized the IEEE P754-2008 binary 

encoding of decimal floating-point numbers. This 

BID adder has utilized a hardware component for 

decimal digit counting and an improved version of 

formerly published BID rounding unit. They 

established that a BID-based DFP adder design can 

be accomplished with a little area increase in 

comparison to a single 2-stage pipelined fixed-point 

multiplier. 

Liang-Kai Wang et.al [15] displayed novel 

designs for a decimal floating-point multifunction 

unit and a decimal floating-point adder. To decrease 

their delay, both the multifunction unit and the adder 

utilized decimal injection-based rounding, another 

type of decimal operand arrangement and a quick 

flag-based technique for adjusting and overflow 

detection.  

Fahmy et.al [16] presented new algorithms 

and properties which are utilized as a part in a 

software implementation of the IEEE P754 decimal 

floating-point arithmetic, with emphasis on utilizing 

binary operations effectively.  

P. Gurjar et. al.[17] described the 

manufacturing of high-speed adder circuit using 

Hardware Description Language (HDL). The 

purpose behind this is that an adder is a very critical 

building block of arithmetic and plays an important 

role in determining the performance of central 

processing unit (CPU).  

Gargaveet. al. [18] presented a proficient 

implementation of an IEEE P754 single precision 

floating point multiplier. This multiplier handles 

both the overflow and underflow cases. To give 

more precision to the multiplier in a multiply and 

accumulate (MAC) unit rounding could not be 

implemented.  

 

III. PROPOSED MULTIPLICATION 

TECHNIQUE 
The basic algorithm to multiply BID 

numbers to understand the hardware implementation 

of BID multiplier is as follows.  

A DFP number consists of a triple (S, E- 

bias, C) where S is the sign bit, E is the biased 

exponent and bias is a constant value which makes E 

non-negative and C is the significant. For e.g.: - A 

and B being two IEEE P754-2008 input operands 

have 

(AS, AE, AC) and (BS, BE, BC) as their 

triples respectively. 

To start the operation, firstly to extract sign, 

biased exponent and significant, the BID encoded 

operands are unpacked then Ac and BC are 

multiplied using binary multiplication and 

intermediate product IPC is obtained. 

Simultaneously the exponents are added, and bias is 

removed, and intermediate exponent is produced, 

and two sign bits are together to produce the final 

sign bit. In the next step, IPC is examined to 

determine if rounding is required and how many 

more digits are needed to be rounded, If the number 

of decimal digits in IPC is less than the result 

precision p, rounding is not needed and 

multiplication is finished else IPC must be rounded 

and accordingly IPEXP should be adjusted .In the 

last stage the sign ,biased exponent and significant 

of the result are packed to calculate the BID encoded 

result of the multiplication. For e.g.-Consider the 

decimal 32 BID encoded operands of A = 

5B08BBCB16 and B = 8F00007316as inputs to the 

multiplication. As discussed above inputs are first 

decoded to obtain: 

A= 0,182 − 101,572363 and B = 1,30 − 101,115  



Anusha Peluri Journal of Engineering Research and Application                                    www.ijera.com    

ISSN : 2248-9622 Vol. 9,Issue 10 (Series -III) October 2019, pp 41-46 
 

 
www.ijera.com            DOI: 10.9790/9622- 091003414644|P a g e  

 

 

 

 

 

Then the significant are multiplied to produce IPC = 

65821745. In parallel the biased exponents are 

added, and bias is subtracted to obtain IPC = 182 + 

30 − 101 = 111. In this IPc contains 8 digits and 

precision p=7 digits, so rounding off IPC by one 

digit is necessary. Depending on the rounding mode, 

the rounded result is either 

Z = 1,112 − 101,6582174 = 6582174 × 10
11

 or 

Z = 1,112 − 101,6582175 = 6582175 × 10
11 

 

 
Fig.2. BID Hardawre Implementation 

 
IV. IMPLEMENTATION OF BID 

MULTIPLIER 
Different radix-based algorithm was 

proposed by BID – encoded decimal32 numbers, out 

of which radix-8 multiplier is used to reduces the 

number of partial products. So, in binary multiplier 

radix 8 multiplier is used to generate the partial 

products and then carry save adders are used to 

accumulate the partial products. The binary 

multiplier produces the product in the form of carry 

save as 

 (PC, PS) =M. N+S+C. Here PC is partial 

carry output and PS is partial sum output. The binary 

multiplier combines the sum of feedback 

information (C, S) and carry save partial product 

(PC, PS) using a 4:2 compressor which further 

decreases the area and delay of BID multiplication 

[11]. Figure 2 represents whether rounding is 

required or not. As already discussed, rounding is 

needed if IPC is greater than or equal to 107. A 

direct comparison of IPC to 107 results in higher 

delay [5]. So, to reduce delay, this BID multiplier 

utilizes an optimized technique where Atop, B top 

and a 25-bit adder that adds the 25 least significant 

bits of PC and PS are used. To add these bits any 

one of carry select adder, carry look ahead adder or 

ripple carry adder can be used. 

If (Atop+ B top > 23) or if the output of the 

25-bit adder is greater than 107, then rounding is 

done. The 25-bit adder forms the least significant 25 

bits of IPC Then the most significant bits of IPC are 

obtained in parallel with least significant bits ofIPC 

by using a compound adder. A compound adder 

adds the most significant 25 bits of PS and PC to 

produce sum=PS [9: 25] + PC [ 49 + 25] and sum + 

1. Depending on the carry-out from the 25-bit adder, 

the multiplexer selects the correct sum for the most 

significant 25 bits of IPC to calculate precisely 

number of digits to round off, the BID multiplier 

does the comparison between 10n and IPC = PS + 

PC using a 50-bit 3:2 compressor. PC + 1, PS and 

the bitwise negation of 10n are the inputs to 3:2 

compressor. This produces two vectors that are then 

added together, as shown in Fig. 3.10. After this the 

inspection of sign of the addition of the two vectors 

is done to determine if IPC > 10
n
. The LSB of PC is 

set to 1 so that PC + 1 can be obtained without any 

addition, as LSB of a carry vector is normally 0. 

 This approach has less delay than 

subtracting 10n from IPC. The exact number of 

decimal digits to round off is calculated, once it is 

determined if (IPC > 10
n
, as described above. 

The rounding is carried out by splitting IPC and Wd 

into upper and lower 24-bit halves and then 

obtaining four passes through the 24×24-bit 

multiplier [4]. By using this approach, both 

significant multiplication and rounding are 

performed by same multiplier, Output of 

multiplier/rounder block is the output significant, 

biased exponent and sign bit. Then these outputs are 

given to the BID encoder block that will pack these 

results and provide the final IEEE P754-2008 result 

So, decimal rounding using reciprocal multiplication 

has been done to remove a division circuit and to 

reuse the binary multiplier used for BID significant 

multiplication. Reciprocal multiplication can be seen 

as multiplication by a pre-calculated and scaled 

estimation of 10
−d

. 

The method to execute BID rounding comprises of 

multiplying the number to round by a precalculated 

estimation of wd = 10
−d

 to obtain effective division 

by m = 10
d
. 

Table 1. Product Fileds 

Quotient Field(Q) 

(variable width(u+ 

1 − v) bits) 

Remainder 

Field(R) 

(variable width: v 

bits) 

Discarded 

Field(D) 

(fixed width: u 

bits) 

 Entire algorithm can be described simply by below 

mentioned steps. 

Step1: Inputs A and B are decoded to find (AS, AE, 

AC) and (BS, BE, BC). Step2: Compute sign: ZS = AS 

XOR BS 

Add Exponents: IPC = AE × BE − bias Multiply 

Coefficients: IPC = AC × BC Find leading one 

position of   AC: Atop 

Find leading one position of    BC: B top 

Find leading one position of IPC: K = A top + B top 



Anusha Peluri Journal of Engineering Research and Application                                    www.ijera.com    

ISSN : 2248-9622 Vol. 9,Issue 10 (Series -III) October 2019, pp 41-46 
 

 
www.ijera.com            DOI: 10.9790/9622- 091003414645|P a g e  

 

 

 

 

 

Step3: Finding if rounding is required: 

round_required= (IPC ≥ 10
7
) If (round_required) 

//Find d 

d
′
 = n −p //d′ is stored in LUT that is indexed by k 

d = d
′
 + (IPC ≥ 10

7
) //10

n
is stored in LUT that is 

indexed by k 

Step4: Execute rounding if required: 

If (! round _required) //multiplication operation is 

finished 

ZE = IPE 

ZC= IPC 

Else //rounding required 

TPC = floor (IPC × 10
−d

 )  //from IPC × wd 

Step5: Obtain r* and s* information to get the result 

Optional increment of IPC depending on sign, 

rnd_mode, r* and s* 

ZC - tmp = TPC + 1 or Z C = TPC 

Step6: Check whether adjustment is required □ 

 

V. RESULTS AND DISCUSSION 
After designing the BID based floating point 

multiplier in verilog HDL, the design is simulated 

using ISIM simulator. Figure 3 shows the simulation 

results for BID based floating point multiplier. 

 

Table 2. Operations involved in Multiplication 

Xi+1 xi Xi-1 Partial 

products 

ppi 

operation on 

multiplicand 

0 0 0 0 Add 0 

0 0 1 +Y Add multiplicand 

0 1 0 +Y Add multiplicand 

0 1 1 +2Y Add 

2*multiplicand 

1 0 0 -2Y Subtract 

2*multiplicand 

1 0 1 -Y Subtract 

multiplicand 

1 1 0 -Y Subtract 

multiplicand 

1 1 1 0 Subtract 0 

 

After designing the BID based floating point 

multiplier in verilog HDL, the design is simulated 

using ISIM simulator. Figure 5.1 shows the 

simulation results for BID based floating point 

multiplier. 

Considering the following are the inputs in BID 

format 

a= 00000000111111110000111100001111 

b=00110011001100110000011100000000 

Depending upon the rounding mode used, the output 

obtained after calculating the sign, significant and 

the exponent and after rounding using the steps 

described above should be 

c=00000000111111110000111100001111or001100

11001100110000011100000000 

 
Fig.  3. RTL Schematic Diagram of Multiplier 

 

 

Fig.  4. Simulation Results of Multiplier 

 

Simulation results shown in figure 4 

describes the multiplication procedure for two 

floating point numbers represented in decimal 

format. Multiplication result is represented using 

variable Z. In order to get clear understanding 

multiplication on signed numbers is calculated and 

shown in figure 4. To get a negative number as 

result, one positive number and one negative number 

taken as multiplier and multiplicand. Also both the 

negative numbers are multiplied to show a positive 

number as result. 

 

Table 3. Resource Utilization Summary 

Resources Traditional 

Multiplier 

Proposed 

multiplier 

LUT 2 1438 1229 

LUT3 92 69 

LUT4 339 137 

FFS 941 704 

MAXIMUM 

COMBINATIONAL 

PATH DELAY 

112.24ns 93.702ns 

 



Anusha Peluri Journal of Engineering Research and Application                                    www.ijera.com    

ISSN : 2248-9622 Vol. 9,Issue 10 (Series -III) October 2019, pp 41-46 
 

 
www.ijera.com            DOI: 10.9790/9622- 091003414646|P a g e  

 

 

 

 

 

 
Fig.  5. Graph representing Resource Utilization 

 
VI. CONCLUSIONS 

Modified architecture for floating point 

multiplier is designed and is described in this paper. 

This research work includes the designing and 

implementing of a less area utilizing floating point 

multiplier. Simulation results shows that 19% 

reduction in size of the chip is observed with the 

proposed architecture. This leads to reduction in 

complexity of the system design. Also, the proposed 

design is of less combinational path delay. Delay 

reduction is may lead to increase in the processing 

speed. Entire system is described in Verilog HDL 

and is simulated using Xilinx ISE. Also physical 

verification is done using Spartan 3 FPGA. 

 

REFERENCES 
[1]. M. K. Jaiswal and H. K.-H. So, “DSP48E 

efficient floating point multiplier architectures 

on FPGA,” in 2017 30th International 

Conference on VLSI Design and 2017 16th 

International Conference on Embedded 

Systems (VLSID), 2017, pp. 1–6. 

[2]. R. K. Kodali, L. Boppana, and S. S. 

Yenamachintala, “FPGA implementation of 

vedic floating point multiplier,” in 2015 IEEE 

International Conference on Signal 

Processing, Informatics, Communication and 

Energy Systems (SPICES), 2015, pp. 1–4. 

[3]. S. Kim and R. A. Rutenbar, “An Area-

Efficient Iterative Single-Precision Floating-

Point Multiplier Architecture for FPGA,” in 

Proceedings of the 2019 on Great Lakes 

Symposium on VLSI, 2019, pp. 87–92. 

[4]. D. Peroni, M. Imani, and T. Rosing, 

“Runtime Efficiency-Accuracy Trade-off 

Using Configurable Floating Point 

Multiplier,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and 

Systems, 2018. 

[5]. N. S. Kim, S. Gilani, and M. Schulte, “High 

efficiency computer floating point multiplier 

unit.” Google Patents, 13-Dec-2016. 

[6]. M. Imani, D. Peroni, and T. Rosing, “Cfpu: 

Configurable floating point multiplier for 

energy-efficient computing,” in Proceedings 

of the 54th Annual Design Automation 

Conference 2017, 2017, p. 76. 

[7]. S. G. Navarro and J. Hormigo, “New Results 

on Non-normalized Floating-point Formats,” 

IEEE Transactions on Computers, 2019. 

[8]. A. K. Gupta, A. Singh, and V. Yadav, 

“VLSID 2014.” 

[9]. P. T. P. Tang, E. Schneider, and C. Tsen, “A 

Software Implementation of the IEEE 754R 

Decimal Floating-Point Arithmetic Using the 

Binary Encoding Format,” Computer 

Arithmetic: Volume III, vol. 3, p. 411, 2015. 

[10]. W. E. Ferguson, B. J. Hickmann, and T. D. 

Fletcher, “Method, apparatus, system for 

single-path floating-point rounding flow that 

supports generation of normals/denormals and 

associated status flags.” Google Patents, 22-

Sep-2015. 

[11]. B. S. Ganesh, J. E. N. Abhilash, and G. R. 

Kumar, “Design and Implementation of 

Floating Point Multiplier for Better Timing 

Performance,” International Journal of 

Advanced Research in Computer Engineering 

& Technology, vol. 1, no. 7, 2012. 

[12]. L. Fang, B. Li, Y. Xie, and H. Chen, “A 

Unified Reconfigurable CORDIC Processor 

for Floating-Point Arithmetic,” 2018. 

[13]. T. D. Nguyen and J. E. Stine, “A combined 

IEEE half and single precision floating point 

multipliers for deep learning,” in 2017 51st 

Asilomar Conference on Signals, Systems, 

and Computers, 2017, pp. 1038–1042. 

[14]. C. Tsen, E. M. Schwarz, and M. J. Schulte, 

“A survey of hardware designs for,” 

Computer Arithmetic: Volume III, vol. 3, p. 

437, 2015. 

[15]. L. Wang et al., “Floating-Point Multiply-Add 

with Down-Conversion.” Google Patents, 12-

Oct-2017. 

[16]. H. A. H. Fahmy, “Decimal Floating Point 

Number System,” in Embedded Systems 

Design with Special Arithmetic and Number 

Systems, Springer, 2017, pp. 89–111. 

[17]. P. Palsodkar and A. Gurjar, “Fused Floating 

Point Arithmetic Unit for Radix 2 FFT 

Implementation,” IOSR Journal of VLSI and 

Signal Processing, vol. 6, no. 2, pp. 58–65, 

2016. 

[18]. S. Gargave, Y. Agrawal, and R. Parekh, 

“Single-Precision Floating Point Matrix 

Multiplier Using Low-Power Arithmetic 

Circuits,” in Advances in Power Systems and 

Energy Management, Springer, 2018, pp. 

683–691. 

 


