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I. INTRODUCTION:

The theory of integral equations has close
contact with many different areas of different
sciences. These different problems have led
researches to establish different methods for
solving integral equations of different kinds with
continuous kernel. There are many well-written
texts on the theory and applications of integral
equation in different sciences. Among such, we
noteGreen,1969);(Hochstadt,1971);
(Golberg.ed,1979), (Tricomi, 1985); (Burten1983);
(Kanwal, 1996); ( Schiavone at.al.,2002) and
(Muskhelishvili, 1953). The reader must know that
the importance of the singular integral equations
came from the work of(Muskhelishvili1953); , who
has established the theory of singular integral
equation ( Cauchy method ), that gives the solution
of the singular integral equation, analytically.

At the same time, approximately from
1960, many new numerical methods have been
developed for the solution of many types of integral
equation. We note especially (Linz, 1985); (
Atkinson, 1976. 1997);(Baker , 1082), (Delves and
Mohamed, 1985) and (Golberg ,ed. 1990).
Consider the linear Volterra integral equation of the
second kind,

olt)=f (t)+ zl K(ts) ols) ds (1

Here, Kk(t, s) and f(t) are known continuous functions
called the kernel and free term, respectively, while
¢(s) is the unknown function.

Theorem 1.(without proof):If k(t,s) and f(t) are
continuous in  0<t < T, then the integral equation
(1) possesses a unique continuous solution in 0 <t
<T<1.

Here, in this paper the existence and uniqueness
solution of Volterra integral equation of the second
kind is considered. In addition, the solution of the
linear Volterra equation with continuous kernel is
obtained using a new technique for studying the
resolvent kernel. Some examples are considered
and the estimate error, with respect to the kernel,is
computed.

Il. THE RESOLVENT KERNEL
METHOD

We pick up continuous function ¢, (X) = f(t) then,

from (1) we define the sequences
t

o, (t)=f (t)+2 [ k(ts) g(s) ds, n=1,2,..2)
and 0

pa)=1 ()% 2 [ K(t5) u(s)ds @
By subtracting, we hai)/e

0,0)-0,1(0)= 2 ] (L) 0,4(s)-0, (s s
@) 0

For easy of manipulation it is convenient to
introduce

Ay ()=0,0t)-0. () wolt)=f (t), n=1,2... ()

By using equation (5), the formula (4) becomes
t

v, (t):I k(t,s) w,.(s)ds, n=1,2,.(6).

0
In addition, from equation (5), we get

o ()= 2 4" wit) )

i=0
Using the recurrence relations and mathematical
and the factthat: If the kernel k(t,s) and the
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function f (t) are continuous, then the order of
integration can be interchanged, we get

t

ko (ts)F (s)ds; K, (t.8)= [k (t. ek, o (rs)dr @)

S

O —_—y

Wn(t):

withk, (t,s)=k (t,s).
The kernels k, (t,s),n =1,2,...are called the iterated

kernels.
From equation (7), we follow

o, (t):iZ:; Ay (t)=f(t)+ /”ti: A7y (t)
Therefore, we get
oy ()=F )+ 2 [T, (ts:2)f (5)ds,  (9)

(
Where:

L (tsid) = A7k, (t.s) (10)

If the kernel «k(t,;s) s continuous and

|k (t.s) |£ M , 0 <s<t<T, then we can prove

by induction that

M" (T -s)"
(n-1)!

Hence, the sequence in equation (10) converges

and we can write

, T =maxt, 12)

k,(t.s) |£

ritsiz)= 3 27k (ts)(12)
The function r(t,s;4) is the resolving kernel for
k(t, s).
Theorem(2) (without proof):If k(t,s) and f(t) are

continuous then the unique continuous solution of
equation (1) is given by

p(t)=t )+ 4 [T(ts:2)f (s)ds @3

Theorem (3)  Under the assumptions of
theorem (2), the resolving kernel r(t,s;2) satisfies

the equation
t

T(t,s;4)=k (t,s)+4 [ k(t,r) T(t,rs2) do,

0<s <t <T. (14)

proof :Using equation (12), we see that
t t

ﬂjk(t,r) F(I,r;/l)dr: lfk(t,r) i pi k, (r,s)dr
‘ s H (15)

IS o) o)

N

In addition, from equation (10), we have
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t ©
A[k(te)T(tn) de= /12; A7k (ts)

=k, (t,s)+ Ak, (t,5)+ A7 Ky(t,s)+ .. -k (t,5)
Since k,(t,s)=k (t,s) then

K Tmd) de= 3 i (Ls) K (Ls)

(16)
Using equation (12)in (16), we obtain

z,tj k(t,z)T(t,;;A)dr= T(t,s;4) — k(t,s)

Therefore, the following formula is satisfied
t

[(t,s;4) = k(ts) +/1J' k(t,z) T(z,5:4) dz
1. APPLICATIONS:

Example (1):Find the resolving kernel of Volterra
equation for k(t, s)=1

Solution: Assume
ki (x,y)=k(x,y)=1

Hence, we have

fle)= et i -2,
y .
)= kb < dsz sl
)= [kleholeh =L =" - =
y y Y
For n times, we get
(x—y)"*
Kk _27y)
n(X,Y) (D)1

Hence, the resolving takes the form
N AT -Y)" e
L n _ _aAx-y)
R(x,y,z)—zc‘;ﬂ k”+1(x'y)‘zo—n! =e
n=| n=

Example 3.2: Solve the integral equation
t

ot) =g(t) + %je(”) p(s)ds, (0<s<t<T)

0
Hence, find the solution when g(t)=1 and
sinh(3t /2)

Solution: Here, K (t,S) SN

Let,  ky(t,s)=k(t,s)=e""

In addition, we have
t t
kz(t,s)=j k(t,7) ky(z,s)dr= Je"s dr =(t-s)e"
t t

)= k() k() de= | (f_s)dfzi s e

S S
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So, in general, we obtain t

G (Ls) = —E (tos)™ e ¢<t)=g(t)+§ [eids =g 0-e)
nY (n-1) ! 0
Using equation (12), we have At )
i1 i-1 . 3t
L s e (1 (t-s) i) Atglt)=1- gt)= —(2+e*)
)= €2 31 (3) L

ii) At g(t)=sinh(® 12) > g(t)= ~(5e?' -7 -2),
e(t—s) e%(t—s) _ e%(t_s) ) Atg(t) &/2)- 4(t) 6( )
Finally, we can obtain Now, we calculate some difference values of

K, (t, S) and the corresponding error.

t {s=0.1} {s=0.2} {s=0.7} {s=0.9}

0 0.818731 | 0.67032 0.246597 | 0.165299
0.1 1 0.818731 | 0.301194 | 0.201897
0.2 1.221403 |1 0.367879 | 0.246597

0.3 1.491825 | 1.221403 | 0.449329 | 0.301194
0.4 1.822119 | 1.491825 | 0.548812 | 0.367879
0.5 2.225541 | 1.822119 | 0.67032 0.449329
0.6 2.718282 | 2.225541 | 0.818731 | 0.548812

0.7 3.320117 | 2.718282 1 0.67032
0.8 4.0552 3.320117 1.221403 | 0.818731
0.9 4.953032 | 4.0552 1491825 |1

Table (1) contain the value of the kernel K, (t,s) = e2*(t=5)
For the valuess = 0.1, s=0.2, s=0.7, s=09
and the corresponding valuests.t 0<t<9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
—f(t){s=0.1} g(t){s=0.2} h(t){s=0.7} k(t){s=0.9}

Figure (1)
The relation between t and kernelK,, (t,s) = e?*®) for some values of s

t {s=0.1} {s=0.2} {s=0.7} {s=0.9}
0 0.860708 | 0.740818 0.349938 | 0.25924
01 |1 0.860708 0.40657 0.301194
0.2 | 1161834 |1 0.472367 | 0.349938
0.3 |1.349859 | 1.161834 0.548812 | 0.40657
0.4 | 1.568312 | 1.349859 0.637628 | 0.472367
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0.5 | 1.822119 | 1.568312 0.740818 | 0.548812
0.6 | 2.117 1.822119 0.860708 | 0.637628
0.7 | 2.459603 | 2.117 1 0.740818
0.8 | 2.857651 | 2.459603 1.161834 | 0.860708
0.9 |3.320117 | 2.857651 1.349859 |1

3
Table (2) contain the value of the resolvingl', (t, S; %) = 2t

For the values s =0.1, s=0.2, s=0.7, s=0.9

3.5

3
2.5

2
1.5

1
0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
— f(t){s=0.1} g(t){s=0.2} h(t){s=0.7} k(t){s=0.9}
Figure (1)
The relation between t and resolvingl’, (t, S; %) = e%(t‘s) for some values of s
(t=s)"" (s

or the convolution kernel k (t,s)= e

(n-1)!

(1) If n=1 then k, (t, s) > 0 and the value increased
for all points of interval t such that t>s andk, (t, s)
=lwhent=s
(2) If n>1, n= 3,5, 7... the value of ky(t, s) >0
decreased for t<s,
and increased when t>s.
(3) Ifn>1,n=24,6... the value of k, (t,s) <0
increased when t>s,

Some difference Figures for the relation between
the exact resolvent kernel I'(t, s; A) and the
numerical resolventI,(t, s; A) at S = 02,4A= 1

3
=(t-s)

or the resolvent kernel F(t, S; /1) =g? we get

F(t ,s;/l) >0 for all values of t, and for

rtsa)=> A% (ts)4 :%
and -
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_ (t — S)i_l t-s
we get

T, (t,s;4)>T(t,s;4)>Owhent<s,
T, (t,s;4)=T(t,s;1)=1whent =s,
and

0<T,(t,s; 1)< I(t,s; A)whent>s.
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