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ABSTRACT 
Proposed is the simultaneous state and parameter estimations for a class of stable linear uncertain discrete-time 
systems where at least one state is measured. The model uncertainties are represented as additive matrices to the 
state and input matrices in the state space system representation. The proposed methodology is a recursive 
process whereby the elements of the uncertain state matrices are estimated using the states predicted by a 
Luenberger observer. These new estimates  are  used to update the Luenberger observer which then forecasts the 
subsequent states. Adaptations to the uncertain state matrices are then made using the newly estimated states. 
The utility of this formulation is that the model uncertainties are confined to the structure of the state matrices 
thus identifying the location(s) within the state matrices requiring parameter adaptation. Based on the location(s) 
and size of these adaptations, real-time health monitoring and health degradation isolation for a system can be 
realized thereby enabling prognostics, remaining useful life estimation, and forecasting. To benchmark the 
effectiveness of the proposed methodology, a comparison of the state and parameter estimations produced using 
the proposed method, a Kalman filter and the augmented extended Kalman filter is provided. 
Keywords -  state observer, least squares estimation, model uncertainties
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I. INTRODUCTION 
Simultaneous state and parameter 

estimations are pivotal concepts applicable to a 
broad range of disciplines requiring forecasting, 
monitoring, and control. Historically, state 
estimation has relied on Luenberger observers [1, 2, 
3, 4] and Kalman filters [5, 6, 7, 8]. These methods 
are traditionally based on time-invariant models with 
known parameters. In the case when the physical 
system parameters do not match the observer model, 
as is usually the case, there is the potential for a 
large bias in the estimation of the unmeasured states. 
As accurate state predictions are necessary for 
forecasting, monitoring and control, the need for 
adaptive observer parameter estimation arises. 

Historically the need for simultaneous state 
and parameter estimation is addressed with a 
Kalman filter (KF) augmented with additional states 
[9, 10]. Specifically, the additional states, 
representing the uncertain model parameters, allows 
for the asymptotic convergence of the unknown 

parameter estimates. Collectively the new state 
vector enables the simultaneous state and parameter 
estimation. 

The augmented Kalman filter has evolved 
to an extended version for nonlinear systems where 
the augmented extended Kalman filter (AEKF) has 
proven effective [11, 12]. Its successful application 
has broadly appeared in finance [13], biology and 
medicine [14], transportation [12], robotics and other 
areas of engineering [15, 16, 17]. In this EKF 
formulation, the uncertain system parameters are 
incorporated as additional states and are therefore 
estimated simultaneously alongside with the inherent 
states of the system. In [11] AEKF was successfully 
employed to estimate the state of charge of Lithium-
Ion batteries and in [18] AEKF was used for the 
joint estimation of the dynamic states and 
parameters of a moving vehicle.  

Alternative methods in the literature jointly 
employ the Kalman filter for estimating system 
states and the Least Squares Estimation algorithm 
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(LSE) for estimating model parameters. In these 
approaches, the Kalman filter updates the state 
estimates sequentially, while a batch Least Squares 
step is periodically performed to estimate the model 
parameters. The integration of both methods 
enhances the ability of the Kalman filter to handle 
systems with time-varying parameters. However, the 
computational complicity increases, and the 
probability of numerical instabilities arise  due the 
batch processing nature of LSE. In [19] KF-LSE has 
been used for the structural health monitoring and 
the early detection of structural damage via the on-
line identification of the structural parameters. In 
[20], the KF-LSE effectiveness in  estimating the 
system states and parameters was demonstrated on  
an observer in canonical state space form. In [21] a 
generalized extended recursive least squares 
estimation algorithm (RLSE)  has been used along 
with KF for the joint parameters and states 
estimation for observer state space systems with 
colored noise. 

Another approach that has been employed 
for uncertain system state and parameters estimation 
is based on observer theory and incorporates 
adaptive control techniques, known as an adaptive 
observer. The methodology is designed to not only 
estimate unmeasured states but also adapt its internal 
parameters to handle uncertainties and variations in 
system parameters. Although the method requires a 
fine-tuning of various parameters, its real-time 
adaptation makes it well-suited for systems with 
time-varying parameters and operating conditions. In 
[22] an adaptive observer approach to analyze a 
Rössler hyper-chaotic system featuring two unstable 
poles has been studied. The method aimed to 
estimate both model coefficients and states by 
assessing the error between measured and estimated 
states. In [23] an adaptive observer  has been 
employed to identify the parameters of a chemical 
reaction. In that investigation the unknown 
parameters were assumed to be constant, thus not 
able to address time-varying model parameters. In 
[24], an iterative learning observer was designed by 
augmenting the Luenberger observer with an 
additional term, aiming to simultaneously identify 
states and time-varying faults. Additional observer-
based system identification techniques have been 
implemented for model-based fault detection and 
diagnosis [25, 26]. An augmented Luenberger 
observer is provided in [27] that estimates both 

internal and external uncertainty of the system. This 
estimation cancels the effect of uncertainty on the 
state feedback control design thereby offering 
improved robustness and disturbance rejection. 

In [28] an observer-based method was 
employed in the problem of parameter estimation 
within a parametric uncertain system where the 
states and output matrices are expressed as the sum 
of a nominal and a perturbation matrix. The 
methodology performs on the cases where all the 
states within the system are measurable, and its 
effectiveness was demonstrated on an example of 
non-stimulated system and without output 
uncertainties. Therefore, the developed method does 
not address the class of systems with unmeasurable 
states. Inspired by the later work, the present paper 
presents a solution for the simultaneous estimation 
of states and parameters in the problem of 
parametric uncertain system where the states and 
input matrices are expressed as the sum of a nominal 
and a perturbation matrix and partial state 
measurement. The proposed method employs a 
sliding window Recursive Least Squares estimation 
algorithm [29] with covariance reset (RLSE-CR) to 
capture the parameter variability and a Luenberger 
observer to handle internal states estimation. The 
algorithm runs in parallel with the system and uses 
the available input/output data to generate an 
optimal estimate of the unmeasured states and 
system parameters. A stability analysis of the 
observer is carried out ensuring the convergence of 
the state estimation in the presence of model 
uncertainty.  The present study addresses the case 
where the model structure is known, and the nominal 
model parameter are known as well. The goal is to 
estimate both the unmeasured states of the system 
and the uncertainties in the model parameters that 
are incorporated in the uncertain state space 
matrices. 

The paper is organized as follows. 
Presented in section II is the problem statement. 
Developed in section III are the basic design 
concepts of the Luenberger state observer. A 
simulation example is presented in section IV. 
Illustrated in the same section a comparison between 
the proposed method results and those of KF-RLSE-
CR and  AEKF methods. A brief conclusion is 
presented in section V.  
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II. PROBLEM STATEMENT 
Consider a stable observable linear 

discrete-time model with time varying model 
uncertainties defined as 

 𝑥(𝑘 + 1) = 𝐴(𝑘)	𝑥(𝑘) + 𝐵(𝑘)	𝑢(𝑘) 

𝑦(𝑘) = 𝐶	𝑥(𝑘) 

(1) 

where 𝒙(𝑘) ∈ ℛ!	is the system state, 𝒖(𝑘) ∈ ℛ" is 
the system input and 𝒚(𝑘) ∈ ℛ# is the measured 
system output. The system matrices are defined as  
𝑨(𝑘) = 𝑨𝟎 + 𝚫𝑨(𝑘) ∈ ℛ!×! and 𝑩(𝑘) = 𝑩𝟎 +
𝚫𝑩(𝑘) ∈ ℛ!×"  where 𝑨𝟎 and 𝑩𝟎 are the nominal 
system parameters, and 𝚫𝑨(𝑘) and 𝚫𝑩(𝑘) are the 
unknown time-varying parameters. The system 
output matrix, 𝑪 ∈ ℛ#×! , defines the individual 
state(s) that are measured. The objective is to 
estimate the uncertain matrices 𝚫𝑨(𝑘) and 𝚫𝑩(𝑘) 
and the states 𝒙(𝑘)  of the system using the given 
input 𝒖(𝑘) and the available state measurement(s) 
denoted as 𝒚(𝑘). 

III. SIMULTANEOUS STATE AND 
PARAMETER ESTIMATION 

METHODS 
Detailed in this section are the proposed 

state/parameter estimation methodology. The class 
of uncertain parametric systems considered is 
defined in (1). Shown in Figure 1 is the parallel 
passive execution of the observer.   

 

1. Observer-RLSE-CR Estimator 
Developed is an observer-based method for 

the joint estimation of the internal states and 
parameters for the class of systems defined in (1). 
The proposed method integrates a Luenberger 
observer with a covariance-reset RLSE algorithm to 
estimate the unknown system parameter matrices 𝚫𝑨 
and 𝚫𝑩. Here, covariance reset is employed to 
identify when the parameter estimate(s) have 
converged.   

Thus, following a Luenberger observer formulation, 
the state estimation is realized as 

 𝑥7(𝑘 + 1) = 8𝐴& + Δ𝐴:(𝑘); 𝑥7(𝑘)

+ 𝐿	=𝑦(𝑘) − 𝐶&	𝑥7(𝑘)?

+ 8𝐵& + ΔB:(𝑘);𝑢(𝑘) 

(2) 

where 𝑳 represents the observer gain matrix.  

Stability of the Observer States 

Ensuring observer asymptotic stability is necessary 
for state estimate(s) convergence. Let the estimation 
uncertainty be bounded as 

 B𝚫𝑨 − 𝚫𝑨:B
'
< 𝛿(	 

B𝚫𝐁 − 𝚫𝐁:B
'
< 𝛿)			 

 

(3) 

where ‖. ‖' represents the Frobenius norm defined 
for a matrix 𝑴 ∈ ℛ!×! as 

 

‖𝑴‖' = IJJK𝑀*+K
)

!

+,(

!

*,(

 

(4) 

Given the boundedness of the estimated 
uncertainties  in (3), the asymptotic stability of the 
observer is guaranteed provided the eigenvalues lie 
within the unit disc. Thus, the observer gain 𝑳 can be 
designed using the Ackermann method [30] such 
that the observer poles are within the unit disc 
∀	𝚫𝑨(𝑘), that is 

 |𝜆*(𝑨𝟎 + 𝚫𝑨)| < 1 

𝑎𝑛𝑑	|𝜆*(𝑨𝟎 + 𝚫𝑨 − 𝑳	𝑪𝟎)| < 1		𝑓𝑜𝑟			 

	𝑖 = 1,… , 𝑛 

 

(5) 

 

Figure 1.  Block Diagram of the Physical System 
and the Observer. 
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 Parametric Uncertainties Estimation 

The estimation of the matrices 𝚫𝑨 and 𝚫𝑩 can be 
performed using the recursive least squares 
estimation [31]. From equation (1),  

 𝑥7*(𝑘 + 1) = 𝑨Y𝒊(𝑘)	𝒙Z(𝑘) + 𝑩Y 𝒊(𝑘)𝒖(𝑘) (6) 

where the subscript “𝑖” corresponds to the 𝑖./ row in 
a matrix or a vector. Thus, 

 𝑥7*(𝑘 + 1) = 8𝑨𝟎𝒊 + 𝚫𝑨: 𝒊(𝑘);𝒙Z(𝑘) +

8𝑩𝟎𝒊 + 𝚫𝑩: 𝒊(𝑘); 𝒖(𝑘)  

(7) 

Isolating the system uncertainty gives 

 𝑥7*(𝑘 + 1) − 𝑨𝟎𝒊 	𝒙7(𝑘) − 𝑩𝟎𝒊(𝑘)	𝒖(𝑘) 

= 𝚫𝑨: 𝒊(𝑘)	𝒙7(𝑘) + 𝚫𝑩: 𝒊(𝑘)	𝒖(𝑘) 

= 𝝓𝑻(𝑘)	𝜽Y𝐢(𝑘) 

(8) 

where 𝝓𝑻 denotes  

 𝝓𝑻(𝑘) = [𝒙7𝑻(𝑘) 𝒖𝑻(𝑘)] (9) 

and 𝜽Y𝐢 denotes the parameters vector having the 𝑖./ 
rows of the uncertainty matrices 𝚫𝑨:(𝑘) and 𝚫𝑩: (𝑘) 
as elements, namely 

 𝜽Y𝐢𝐓(𝑘) = [𝚫𝑨: 𝒊(𝑘) 𝚫𝑩: *(𝑘)] (10) 

Identifying the exact location(s) within the state 
matrices requiring parameter adaptation is crucial to 
reduce the size of 𝜽Y𝐢 by setting the appropriate 
elements in  𝚫𝑨 and 𝚫𝑩 to zero. 

Let the lefthand side of (8) be defined as 

 𝑧(𝑘 + 1) = 𝒙7𝒊(𝑘 + 1) − 𝑨𝟎𝒊 	𝑥7(𝑘)
− 𝑩𝟎𝒊(𝑘)	𝒖(𝑘) 

(11) 

The RLSE-CR algorithm is initialized as 

 𝜽Y𝒊(0) = 𝟎 (12) 

 𝑷(0) = 𝛿3(𝑰	 (13) 

where 𝛿 is a small, positive constant. The estimation 
procedure executing RLSE is 

 𝑲4 =
𝑷43(	𝝓4

𝜆 + 𝝓4
5	𝑷43(	𝝓4

 (14) 

 𝜽Y𝒊(𝑘) = 𝜽Y𝒊(𝑘 − 1) + 𝑲4e𝑧(𝑘) − 𝝓(𝑘) ∗
𝜽Y𝒊(𝑘 − 1)g	  

(15) 

 
𝑷4 =

𝑷43( −𝑲4	𝝓4
5	𝑷43(

𝜆  
(16) 

where  𝜆 is the forgetting factor, typically chosen to 
be slightly less than or equal to one. Owing to the 
use of a sliding window in the RLSE-CR process, 
fine-tuning of 𝜆 is not as critical as it is in the 
standard RLSE algorithm. The covariance matrix of 
the RLSE algorithm is reset as in (13) with the first 
sample of every 𝑝./ frame. The window size 𝑝 is 
often chosen through an iterative manual selection. 
Alternatively, a direct approach can be based on the 
locations of system poles and principles from linear 
system theory. The system uncertainties can then be 
calculated using the estimated state and input 
matrices 𝚫𝑨:  and 𝚫𝑩: .   

Observer Based RLSE-CR Estimation 

The objective is to concurrently calculate estimates 
of the uncertain state matrices elements and the 
states for the system described in (1) via the 
available input/output data. The estimation flowchart 
shown in Figure 2 is described with two steps: (1) 
Use the state estimates via the observer at the 𝑘./ 
step for uncertain parameters estimation, and (2) Use 
the updated parameters estimation for the (𝑘 + 1) 
state estimations.  

 

 

Figure 2. Flowchart of Computing the Parameter 
and State Estimate using Observer-RLSE-CR 

Method. 
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A window of p data samples is initialized using the 
standard error driven Luenberger observer equation. 
The RLSE runs within the window and estimates the 
𝚫𝑨:  and 𝚫𝑩: . The estimated uncertainties are then 
used to re-estimate the states employing the 
modified Luenberger observer equation. As a  new 
data measurement becomes available, the oldest data 
point is dropped followed by the RLSE-CR to 
update the parameter estimates within that new 
window of data. This process iteratively improves 
the state and parameters estimates. 

IV. APPLICATION EXAMPLE 
To demonstrate the proposed estimation 

methodology, a simulation study on a double mass-
spring-damper system (Figure 3) is provided. The 
input/output data were generated via simulation. 
Model uncertainty in the system parameters 
stiffness/damping and on the input signal were 
introduced in the simulations. The goal is to 
accurately estimate the uncertain system parameters 
and to verify the efficacy of the method by 
observing how the estimated system parameters 
adapt throughout the simulation. 

  

Consider the system in Figure 3, the 
equation of motion governing the movements of the 
two-degree-of-freedom double-mass-spring-damper 
can be derived using Newton’s second law  

 𝑚"𝑥̈" + 𝑏"𝑥̇" + 𝑏#(𝑥̇" − 𝑥̇#) + 𝑘"𝑥" +
𝑘#(𝑥" − 𝑥#) = 0  

(17) 

 𝑚#𝑥̈# + 𝑏#(𝑥̇# − 𝑥̇") + 𝑘#(𝑥# − 𝑥") = 𝑢 (18) 

where 𝑥( and 𝑥) are the displacements of the masses 
𝑚( and 𝑚) respectively from their equilibrium 
positions, 𝑢 is the input force applied to the mass 
𝑚), 𝑘(, 𝑘) are the springs stiffnesses and 𝑏(, 𝑏) are 
the damping values. 

The continuous form of the state space 
representation for the system described above can be 
expressed as 

 𝒙̇ = 𝑨𝒄	𝒙 + 𝑩𝒄	𝒖 

𝒚 = 𝑪𝒄	𝒙 

(19) 

where 𝑥 = l

𝑥̇(
𝑥̇)
𝑥(
𝑥)

m represents the state vector, 

comprised of the displacements and the velocities of 
the two masses, 𝑦 = n

𝑥(
𝑥)o	represents the output 

vector  comprised of the measured displacements. 

The state matrix 𝑨𝒄, the input matrix 𝑩𝒄 and the 
output matrix 𝑪𝒄 are obtained as follows 

 

𝑨𝒄 =

⎣
⎢
⎢
⎢
⎡−

%!&%"
'!

%"
'!

− (!&("
'!

("
'!

%"
'"

− %"
'"

("
'"

− ("
'"

1 0 0 0
0 1 0 0 ⎦

⎥
⎥
⎥
⎤

  

(20) 

 
𝑩𝒄 = l

0
1
0
0

m 
(21) 

 𝑪𝒄 = n0 0 1 0
0 0 0 1o 

(22) 

Consider the discretization of the continuous-time  
double-mass-spring-damper system using Euler 
method. For a sampling time 𝑇7, the Euler 
discretization scheme of the system is 

 𝒙(𝑘 + 1) = 𝑨𝒅	𝒙(𝑘) + 𝑩𝒅	𝒖(𝒌) 

𝒚(𝑘) = 𝑪𝒅	𝒙(𝑘) 

(23) 

where  𝑨𝒅, 𝑩𝒅 and 𝑪𝒅 are the discrete counterparts 
of the continuous-time matrices 𝑨𝒄, 𝑩𝒄 and 𝑪𝒄, that 
can be calculated using the equations 𝑨𝒅 = 𝑒𝑨𝒄	5# =
𝑰 + 𝑨𝒄	𝑇7, 𝑩𝒅 = ∫ 𝑒𝑨𝒄	;𝑩𝒄	𝑑𝜆

5#
&  and 𝑪𝒅 = 𝑪, Thus 

 
𝑨𝒅 =

⎣
⎢
⎢
⎢
⎡1 −

"!#""
$!

	𝑇%
""
$!
𝑇% − &!#&"

$!
𝑇%

&"
$!
𝑇%

""
$"
𝑇% 1 − ""

$"
𝑇%

&"
$"
𝑇% − &"

$"
𝑇%

𝑇% 0 1 0
0 𝑇% 0 1 ⎦

⎥
⎥
⎥
⎤

  

 

(24) 

 
𝑩𝒅 = l

0
𝑇7
0
0

m 
(25) 

 

and  

 

Figure 3. Double-Mass-Spring-Damper System. 
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 𝑪𝒅 = n0 0 1 0
0 0 0 1o 

(26) 

For the representation of the physical system, time-
varying uncertainties on the springs stiffnesses Δ𝑘( 
and Δ𝑘) and on the damping Δ𝑏( and Δ𝑏) are 
introduced, as these parameters may be unknown or 
change over time due to structural damage or 
parameter aging. Thus, the resulting system model 
can be written as function of the uncertain 
parameters as  

 𝒙(𝑘 + 1) = (𝑨𝒅 + 𝚫𝑨(𝒌))	𝒙(𝑘)
+ (𝑩𝒅 + 𝚫𝑩(𝒌))	𝒖(𝑘) 

𝒚(𝑘) = 𝑪𝒅	𝒙(𝑘) 

(27) 

where 𝚫𝑨 and 𝚫𝑩 are  

 

𝚫𝑨 =

⎣
⎢
⎢
⎢
⎡−

#$!%#$"
&!

	𝑇'
#$"
&!
𝑇' − #(!%#("

&!
𝑇'

#("
&!
𝑇'

#$"
&"
𝑇' − #)"

&"
𝑇'

#("
&"
𝑇' − #("

&"

0 0 0 0
0 0 0 0

𝑇'

⎦
⎥
⎥
⎥
⎤

  

 

(28) 

 

 
𝚫𝑩 = l

0
𝐵7
0
0

m 
 

(29) 

The objective is to estimate the unmeasured 
velocities and the elements of the uncertain state 
matrices 𝚫𝑨 and 𝚫𝑩. To that end, the proposed 
observer-based method has been employed for 
validation and assessment purposes. For the 
simulation, the mass-spring-damper system 
parameters nominal values are set to  𝑚( =
5	𝑘𝑔,𝑚) = 3	𝑘𝑔, 𝑏( = 5	𝑁𝑚3(, 𝑏) = 5	𝑁𝑚3(,
𝑘( = 25	𝑁𝑚3(, 𝑘) = 100	𝑁𝑚3(. The sampling 
time 𝑇7 is related to the sampling frequency by 𝑓7 =
(
5#
= 0.1	𝑘𝐻𝑧. Step variations on Δ𝑘( and  Δ𝑘), were 

introduced on this simulation. An input uncertainty 
𝐵7 was incorporated as well. Since there are no 
uncertainties in the damping coefficients, the Δ𝐴 
matrix is written as 

 

𝚫𝑨 = l

0 0 𝛿𝑎(< 𝛿𝑎(=
0 0 𝛿𝑎)< 𝛿𝑎)=
0 0 0 0
0 0 0 0

m  
 

(30) 

For the implementation of the proposed Observer-
RLSE-CR approach, the initial step is the design of 
the observer gain matrix through pole placement 
method. The observer poles positions are selected to 
the left of the continuous-time nominal system poles 
in the s-plane. This placement ensures that the 

observer tracks the plant dynamics at the desired rate 
yet places the observer bandwidth such that sensor 
noise is attenuated. The continuous-time nominal 
plant poles are 𝑝(,) = −1.5401 ± 7.2664	𝑖 and 
𝑝<,= = −0.2933 ± 1.7131	𝑖. Based on those values, 
the observer poles are placed at 𝑝( = −45; 𝑝) =
−40; 𝑝< = −35	𝑎𝑛𝑑	𝑝= = −30. Thus, using 
Ackerman method, the calculated observer gain 
matrix is 

 
𝐾7 = 7

1.24028 −0.192081
−0.192081 1.24028
0.0731667 −0.00744765
−0.00744765 0.0731667

A 
(31) 

For an assessment purposes, the Observer-RLSE-CR 
results were compared with those of an augmented 
extended Kalman filter (AEKF) and a KF-RLSE-CR 
method. The later one has the same structure as the 
proposed Observer-RLSE-CR approach except that 
the Kalman filter fulfills the role of the observer for 
states estimation. A detailed description of the 
mathematical formulations of the KF and AEKF 
algorithms can be found in [32] and [11] 
respectively. The KF state vector 𝑋(, the AEKF state 
vector 𝑋) and its observation matrices 𝐹( and 𝐹), 
respectively, can be written as 

 

As shown in equation (33), the AEKF state vector is 
augmented by the elements of the matrices 𝚫𝑨 and 
𝚫𝑩. 

Presented in Figure 4 is the input force 𝑢 acting on 
the mass 𝑚) and in Figure 5 the resulting 
displacements 𝑦( and 𝑦) of the masses 𝑚( and 𝑚) 
respectively. 

 

 
𝑋" = 7

𝑥̇"
𝑥̇#
𝑥"
𝑥#

A = 7

𝑥"
𝑥#
𝑥8
𝑥9

A 
(32) 

 

					
	𝑋# =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥̇"
𝑥̇#
𝑥"
𝑥#
𝛿𝑎"8
𝛿𝑎"9
𝛿𝑎#8
𝛿𝑎#9
𝐵: ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥"
𝑥#
𝑥8
𝑥9
𝛿𝑎"8
𝛿𝑎"9
𝛿𝑎#8
𝛿𝑎#9
𝐵: ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(33) 
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Consider the time-varying uncertainties Δ𝑘(, Δ𝑘) 
and 𝐵7 listed in the Table 1. 

Table 1. Time-Varying Uncertainties Imposed to the 
System. 

Considering the locations of the system’s poles, the 
settling time associated with the slowest pole is 
𝑡7?..@? = 17.04	𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Thus, the window size 
associated with the estimation process can be 
calculated as 𝑝 = .#$%%&$

/
= 1705	𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

Applying the Observer-RLSE-CR method described 
in Section 3, the superposition of the actual system 
states and the estimated states are presented in 
Figure 6 and Figure 7.  

 

Figure 4. Input Force. 

 

Figure 5.  Measured Displacements. 

 First 15 sec Last 15 sec 

Δ𝑘" 25 10 

Δ𝑘# 50 25 

𝐵: 𝑇:
2  𝑇: 

𝐹" =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 −

𝑏" + 𝑏#
𝑚"

𝑇:
𝑏#	
𝑚"

𝑇: −
𝑘" + 𝑘#
𝑚"

𝑇: + 𝛿𝑎"8
𝑘#
𝑚"

𝑇: + 𝛿𝑎"9
𝑏#
𝑚#

𝑇: 1 −
𝑏#	
𝑚#

𝑇:
𝑘#
𝑚#

𝑇: + 𝛿𝑎#8 −
𝑘#
𝑚#

𝑇: + 𝛿𝑎#9
𝑇: 0 1 0
0 𝑇: 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝐹' =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 −

𝑏( + 𝑏'
𝑚(

𝑇)
𝑏'	
𝑚(

𝑇) −
𝑘( + 𝑘'
𝑚(

𝑇) + 𝛿𝑎(*
𝑘'
𝑚(

𝑇) + 𝛿𝑎(+ 𝑥* 𝑥+ 0 0 0

𝑏'
𝑚'

𝑇)	 1 −
𝑏'
𝑚'

𝑇)
𝑘'
𝑚'

𝑇) + 𝛿𝑎'* −
𝑘'
𝑚'

𝑇) + 𝛿𝑎'+ 0 0 𝑥* 𝑥+ 𝑢

𝑇) 0 1 0 0 0 0 0 0
0 𝑇) 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Provided in Figure 8 and Figure 9 are the 
comparison of the Observer-RLSE-CR, KF-RLSE-
CR and AEKF results in estimating the elements of 
the uncertain state matrices 𝚫𝑨 and 𝚫𝑩. Presented in 
Table 2, Table 3 and Table 4 are the estimation 
error percentage. As shown in the plots all methods 
efficiently estimated the uncertainties 𝛿𝑎(<, 𝛿𝑎(=, 
𝛿𝑎)< and 𝛿𝑎)= with variable estimation errors. As 
listed in the Table 2, Table 3 and Table 4,  the 
Observer-RLSE-CR approach outperform the AEKF 
and the KF-RLSE-CR in the estimation of the 
uncertainty 𝐵7 that was deliberately introduced in the 
input.  

 

 

 

 

Figure 6. Superposition of the Actual and 
Estimated Displacements. 

 

Figure 7. Superposition of the Actual and 
Estimated Velocities. 

 

 

Figure 8.  Estimated Uncertainties of the 𝜟𝑨 State 
Matrix. 

 

Figure 9. Estimated Uncertain Input. 
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Table 2. Estimation Error of the Observer-RLSE-
CR Method. 

 

 

Table 3. Estimation Error of the AEKF Method. 

 

 

Table 4. Estimation Error of the KF-RLSE-CR 
Method. 

To assess the effectiveness of the Observer-RLSE-
CR approach in the presence of noisy data, a zero 
mean white noise (Figure 10) is introduced into the 
sensor measurements. The results of the Observer-
RLSE-CR approach are presented in Figure 11 and 
Figure 12. Despite the challenges associated with 
the sensor noise, the proposed approach effectively 
mitigates the impact of noise on the estimation 
process and provides accurate and reliable 
uncertainties estimations. 

 

Figure 10. Measurement Noise. 

 

 

 

Figure 11. Estimated Elements of the 𝜟𝑨 State 
Matrix using Observer-RLSE-CR Method. 
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Figure 12. Estimated Uncertain Input using 
Observer-RLSE-CR Method. 

The simulations demonstrate that the 
observer-RLSE-CR method constructs a robust and 
effective approach for simultaneous states and 
uncertainty estimation, even in the presence of 
sensor noise. The results indicate that the three 
methods accurately estimate model uncertainties, 
with the observer-RLSE-CR outperforming the 
Kalman-based methods in the estimation of the input 
uncertainties. Unlike Kalman filters, that requires 
manual tuning of the process and measurement 
covariance matrices, the observer-based method 
involves tuning of the observer gain 𝐿 that is 
employed to stabilize the error dynamics and 
optimize the observer performance. 

V. CONCLUSION 
This paper introduces an approach 

addressing the challenge of concurrent estimation of 
states and parameters for an ensemble of linear 
uncertain discrete state space systems. Through the 
integration of a modified Luenberger observer with 
sliding window recursive least squares estimation, a 
robust framework is established capable of tracking 
the system's evolving states while simultaneously 
identifying its time-varying parameters. Through 
simulations, the developed method demonstrates 
improved performance compared to Kalman-based 
estimators like AEKF and KF-RLSE-CR. By 
incorporating sensor measurement noise into the 
data, the developed approach mitigates the impact of 
noise and provides reliable state and parameter 
estimation. 
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