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ABSTRACT  
A Monte Carlo method has been developed for the study of electron transport properties in ZnO taking into 

account the electron-plasmon scattering effect. It is shown that electron-plasmon scattering affects substantially 

the hot-electron energy distribution function and transport properties in bulk ZnO. The following  scattering 

mechanisims, i.e, impurity, polar optical phonon, acoustic phonon, piezoelectric are also included in the 

calculation. Ionized impurity scattering has been treated beyound the Born approximation using the phase-shift 

analysis. 
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I. INTRODUCTION 
The problems of high-field transport in 

semiconductors have been extensively investigated 

both theoretically and experimentally for many 

years. Many numerical methods available in the 

literature (Monte Carlo method, Iterative method, 

variational method, Relaxation time approximation, 

or Mattiessen's rule) have lead to approximate 

solutions to the Boltzmann transport equation [1-4]. 

The Monte Carlo method has been widely used to 

study hot-electron problems [5-9]. The principle of 

this method is to simulate on a computer the motion 

of one electron in momentum space through a large 

number of scattering processes taking note of the 

time that the electron spends in each element of 

momentum space during its flight, this time being 

proportional to the distribution function in the 

elements. The procedure used for the following the 

motion of an electron requires random numbers to 

represent the time which the electron drifts before 

being scattered, and to represent the final state after 

the scattering event. The probability distribution for 

these random numbers can be completely specified 

in terms of the electric field strength and the 

transition probabilities due to the various scattering 

processes. 

Electrons in bulk material suffer intravalley 

scattering by polar optical, non-polar optical, 

acoustic phonons and piezoelectric scattering, 

intervalley phonons, and ionized impurity scattering.  

Acoustic and piezoelectric scattering are 

assumed elastic and the absorption and emission 

rates are combined under the equipartition 

approximation, which is valid for lattice 

temperatures above 77 K. Elastic ionised impurity 

scattering is described using the screened Coulomb 

potential of the Brooks-Herring model. 

It is also found that [10] electron-plasmon 

scattering affects substantially the electron transport 

properties in polar semiconductors under strong 

applied electric field, which is close in value to the 

intervalley transfer threshold field. It is shown [11] 

using the Monte Carlo simulations that the electron-

plasmon scattering is responsible for an increase of 

magnitude of both threshold electric field and 

maximum drift velocity. The electron-plasmon 

scattering rates were calculated [10] within the 

framework of a well-known random phase 

approximation. Here, we present more accurate 

results of a Monte Carlo simulation of hot-electron 

distribution function and transport characteristics in 

ZnO with electron-plasmon scattering processes 

included. 

This article is organized as follows. Details 

of the electron-plasmon scattering and the Monte 

Carlo simulation are presented in section II, and the 

results of steady-state transport simulations 

including electron-plasmon  scattering  are discussed 

in section III. 
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II. MODEL DETAILS AND ELECTRON 

SCATTERING 
Electronic transport in ZnO material under 

high applied electric field is studied using the 

ensemble Monte Carlo simulation. The band 

structure of the material under study is approximated 

with an analytical formulation using non-parabolic 

spherical valleys. Though usage of an analytical 

band structure is questionable at high applied 

electric field strengths wherein impact ionization can 

occure, we adopt its usage here for the following 

reasons. First, due to the large number of 

compositions examined, it is too computationally 

expensive to utilize full band models with their 

concomitant numerically derived scattering 

mechanisms. Second, we have found that the 

analytical model well reflects the low field dynamics 

critical for assessing the carrier mobility. Since we 

restrict our work here only to high field phenomena, 

an analytical band structure is satisfactory. 

The familiar three-valley -U-K 

approximation of the first conduction band has been 

used for the wurtzite crystal structure of ZnO.  

Band edge energies, effective masses and 

non-parabolicities are derived from empirical 

pseudopotential calculations. 

We assume that all donors are ionized and 

that the free-electron concentration is equal to the 

dopant concentration. For each simulation, the 

motion of ten thousand electron particles are 

examined, the temperature being set to 300 K, and 

the doping concentration being set to 10 
22

  m 
-3

.  In 

the case of the ellipsoidal, non-parabolic conduction 

valley model, the usual Herring-Vogt transformation 

matrices are used to map carrier momenta into 

spherical valleys when particles are drifted or 

scattered. Electrons in bulk material suffer 

intravalley scattering by polar optical, 

non-polar optical and acoustic phonons 

scattering, intervalley phonons, ionized impurity and 

electron-plasmon scattering. Acoustic scattering is 

assumed elastic and the absorption and emission 

rates are combined under the equipartition 

approximation, which is valid for lattice 

temperatures above 77 K. Elastic ionized impurity 

scattering is described using the screened Coulomb 

potential of the Brooks-Herring model. Band edge 

energies, effective masses and non-parabolicities are 

derived from empirical pseudopotential calculations. 

In the following section different scattering 

mechanisms will be discussed. 

 

2.1 Deformation potential scattering 

The acoustic modes modulate the inter 

atomic spacing. Consequently, the position of the 

conduction and valence band edges and the energy 

band gap will vary with position because of the 

sensitivity of the band structure to the lattice 

spacing. The energy change of a band edge due to 

this mechanism is defined by a deformation potential 

and the resultant scattering of carriers is called 

deformation potential scattering. The energy range 

involved in the case of scattering by acoustic 

phonons is from zero to vk2  , where v is the 

velocity of sound, since momentum conservation 

restricts the change of phonon wavevector to 

between zero and  2k, where k is the electron 

wavevector. Typically, the average value of  k is of 

the order of 10
7
 cm

-1
  and the velocity of sound in 

the medium is of the order of 10
5
  cms

-1
. Hence, 

vk2   1 meV , which is small compared to the 

thermal energy at room temperature. Therefore, the 

deformation potential scattering by acoustic modes 

can be considered as an elastic process except at 

very low temperature. The deformation potential 

scattering rate with either phonon emission or 

absorption for an electron of energy E in a non-

parabolic band is given by Fermi's golden rule as [6-

7] 
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where Dac is the acoustic deformation potential,  is 

the 

material density and  is the non-parabolicity 

coefficient. The formula clearly shows that the 

acoustic scattering increases with temperature. 

 

2.2 Piezoelectric scattering 

The second type of electron scattering by 

acoustic modes occurs when the displacements of 

the atoms create an electric field through the 

piezoelectric effect. This can occur in the compound 

semiconductors such as the III-V and II-VI materials 

including ZnO, which in fact has a relatively large 

piezoelectric constant. The piezoelectric scattering 

rate for an electron of energy E in an isotropic, 

parabolic band has been discussed by Ridley [12] 

who included the modification of the Coulomb 

potential due to free carrier screening. The screened 

Coulomb potential is written as 

              
r

rqe
rV

s

)exp(

4
)( 0

0

2 



                       (2) 

where s is the relative dielectric constant of the 

material and q0 is the inverse screening length, 

which under non-degenerate conditions is given by  
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(3) 

where  n is the electron density. The expression for 

the scattering rate of an electron in a non-parabolic 

band structure retaining only the important terms can 

be written as [6-7] 
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where Kav  is the dimensionless so called average 

electromechanical coupling constant. 

 

2.3 Polar optical phonon scattering 

The dipolar electric field arising from the 

opposite displacement of the negatively and 

positively charged atoms provides a coupling 

between the electrons and the lattice which results in 

electron scattering. This type of scattering is called 

polar optical phonon scattering and at room 

temperature is generally the most important 

scattering mechanism for electrons in III-V 

semiconductors, and this is also the case in ZnO 

despite the fact that the optical phonon energy is 

particularly high at  93 meV which suppresses the 

phonon population and also electrons must reach 

that energy before phonon emission is possible. The 

scattering rate due to this process for an electron of 

energy E in an isotropic, non-parabolic band is [6-7] 
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where 
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where Nop is the phonon occupation number and the 

upper and lower cases refer to absorption and 

emission, respectively. For small electric fields, the 

phonon population will be very close to equilibrium 

so that the average number of phonons is given by 

the Bose-Einstein distribution 
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where  
op  is the polar optical phonon energy. 

 

2.4 Non-polar optical phonon scattering 

Non-polar optical phonon scattering is 

similar to deformation potential scattering, in that 

the deformation of the lattice produces a perturbing 

potential but in this case the deformation is carried 

by optical vibrations. The non-polar optical phonon 

scattering rate in non-parabolic bands is given by [6-

7]  
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where Dod is the optical deformation potential and  

opEE  ' is the final state energy phonon 

absorption (upper case) and emission (lower case).  

 

2.5 Intravalley impurity scattering 

This scattering process arises as a result of 

the presence of impurities in a semiconductor. The 

substitution of an impurity atom on a lattice site will 

perturb the periodic crystal potential and result in  

scattering of an electron. Since the mass of the 

impurity greatly exceeds that of an electron and the 

impurity is bonded to neighboring atoms, this 

scattering is very close to being elastic. Ionized 

impurity scattering is dominant at low temperatures 

because, as the thermal velocity of the electrons 

decreases, the effect of long-range Coulombic 

interactions on their motion is increased. The 

electron scattering by ionized impurity centres has 

been discussed by Brooks-Herring [13] who 

included the modification of the Coulomb potential 

due to free carrier screening. The scattering rate for 

an isotropic, non-parabolic band structure is given 

by [6-7] 
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where ni is the impurity concentration, q0 is the 

screening length and ks is the dielectric constant of 

the material. 

 

2.6 Intravalley alloy scattering 

Alloy scattering refers to the scattering due 

to the random distribution of the component atoms 

of the alloy among the available lattice sites. 

Harrison  et al. [14] assumed that the alloy crystal 

potential can be described as a perfectly periodic 

potential which is then perturbed by the local 

deviations from this potential, due to the disordering 

effects in the alloy. Using the Harrison model [14], 
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the scattering rate due to the chemical disorder in a 

ternary alloy of electrons in a non-parabolic band is 

given by [6-7] 
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where  x denotes the molar fraction of one of the 

binary 

components of the alloy,  is the volume of the 

primitive cell and U is the spherical scattering 

potential. 

 

2.7 Intervalley scattering due to optical phonons  

The constant energy surfaces for the 

conduction band of ZnO derive from several valleys. 

Thus, under the application of high electric field, 

electrons can be scattered from an initial state in a 

certain valley to a final state in a non-equivalent 

valley. For example, in wurtzite ZnO this process 

occurs when an electron in the  valley is heated and 

is able to transfer to the higher U and K valleys. In 

the case of  to zone edge valley scattering the 

process involves a substantial change of electron 

wavevector. Acoustic and optical phonons of 

sufficiently large wavevector can effect the 

transition but in view of the large wavevectors 

involved it is normal to treat all processes like 

deformation scattering by optical phonons. Then the 

total nonequivalent intervalley scattering rate from a 

state k in a certain valley to a set of Zf different 

valleys is given by [6-7] 
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where 
op  is the optical phonon energy and fi  

is the difference between the energies of the bottoms 

of the final and initial valleys. (DtK)i is the coupling 

constant, which depends on the initial and final 

valleys and the branch of phonons involved in the 

transition. Nop is the phonon occupation number, 

with the upper and lower cases corresponding to 

phonon absorption and emission, respectively. 

 

2.8 Electron-plasmon scattering 

The electron-plasmon interaction Hamiltonian can 

be written in random phase approximation as [15] 
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Here 


qa , qa  and 


kc , kc  are the creation and 

annihilation operators for plasmons and electrons, 

respectively. The matrix element 
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where )(qp  is the dispersion relation for 

plasmons, q and k are the plasmon and electron 

momenta, respectively, e and m* are the charge and 

effective mass of an electron,  the background 

dielectric constant, and   the real-space volume. 

The first term in parentheses in equation 11 

describes the plasmon absorption process which 

obeys the energy conservation law as 
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(13) 

 

where k is the energy of electron with momentum k. 

In a similar manner, the plasmon emission process, 

in accordance with the second term in parentheses in 

equation 11, is governed by the energy conservation 

law which can be written as 
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(14) 

 

Note that equation 14 describes the emission of 

plasmon with momentum -q. To impart a more 

conventional form to the energy conservation law, 

repalce the variable of summation q in terms 

governing the plasmon emission in equation 1 by -q. 

Then we can rewrite equation 11 as 
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The notation of equation 11 leads to the following 

form of the energy conservation law for the emission 

processes 

                      0)(   qpqkk                      

(16) 

 

From the Fermi Golden rule, we can calculate the 

electron-plasmon scattering rates for emission We 

and absorption Wa 
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where k and k' are electron momenta in an initial 

state i  and a final state f , respectively. Here 

and further the upper signs in formulae correspond 

to the plasmon emission, whereas the lower ones do 

to the plasmon absorption. By using equation 11 and 

the energy conservation requirements in the forms of 

equations 13 and 15 which are consistent with this 

notation of Hint, equation 17 becomes 
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where Nq is the Bose-Einstein distribution fuction 

for plasmons. The integration bounds with respect to 

q are defined from the following conditions 
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where kf  is the electron momentum at the Fermi 

surface. 

 

III. CALCULATED RESULTS 
The electron-plasmon scattering is included 

only in the low effective mass  valley. So, we have 

just taken into account the electric field dependence 

of the electron concentration in the  valley, which 

arises due to the intervalley electron transfer, when 

calculating the plasmon frequency in the  valley. 

The effect of the electron-plasmon scattering on the 

steady-state electron distribution function is shown 

in figure 1. As it is seen, the inclusion of the 

electron-plasmon scattering leads to the effective 

cooling of the hot-electron system. 
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Fig. 1. Electron energy distribution function  f()  

for electric field strength of 10 KV/cm with the 

electron-plasmon scattering included and without the 

electron-plasmon scattering at room temperature. 

 

In figure 2 the plasmon emission and 

absorption rates are shown as functions of the 

electron energy. As it can be seen, the plasmon 

scattering occurs when the initial electron energy 

exceeds the threshold energy. At this threshold 

energy the electron-plasmon scattering rates with 

emission and absorption of plasmons rise sharply up 

to 1.7×10
14

 and 1.3×10
14

 s
-1

, respectively and then 

reduces slowly for higher energy. This result shows 

the importance of electron-plasmon scattering on 

electron transport properties in ZnO material. 
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Fig. 2. Electron-plasmon scattering rates with 

emission and absorption of plasmons as a functions 

of the electron energy at room temperature. 

 

Figure 3 depicts the mean electron drift 

velocity as a function of the steady electric field. As 

it can be seen, the electron-plasmon causes the 

threshold electric field to rise since the process of 

increasing the energy of electrons to transfer to the 

upper valleys is hindered as it is clear in figure 4. At 

the same time, electron momentum scattering 

happens predominantly at small scattering angles 

thereby resulting in a higher electron drift velocity. 

From figure 3, it follows that the electron-plasmon 

scattering in the central  valley substantially affects 

the transport properties in ZnO, the threshold 

electric field and maximum electron drift velocity 

increase by %30 and %17, respectively, and Ohmic 

mobility drops by  %15. 
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Fig. 3. Calculated electron steady-state drift velocity 

in bulk ZnO 

as a function of applied electric field assuming a 

donor  concentration  of 10
22

 m
-3

 for the electron-

plasmon scattering   included and without  the 

electron-plasmon scattering at room temperature. 

 

In figure 5, the relative  valley electron population 

is shown as a function of the electric field. It is seen 

that the electron population in the central  valley 

increases with including electron-plasmon 

scattering. 
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Fig. 4. Average electron kinetic energy as a function 

of applied electric field in bulk ZnO for the electron-

plasmon scattering included and without the 

electron-plasmon scattering at room temperature. 
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Fig. 5. Central  valley occupancy as a function of 

applied electric field in bulk ZnO for the electron-

plasmon scattering included and without the 

electron-plasmon scattering at room temperature. 

 

IV. CONCLUSION 
Using an ensemble Monte Carlo method, it 

was shown that the electron-plasmon scattering in 

the  valley substantially affects the hot-electron 

energy distribution function and transport properties 

in ZnO. It is shown that the threshold electric field 

and maximum drift velocity increase by %30 and 

%17, respectively, and Ohmic mobility drops by 

%15. This is caused by combined effects of effective 

cooling of electron gas by electron-plasmon 

scattering and predominantly forward peaked 

momentum relaxation for all electron momenta.  
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