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ABSTRACT 
The present study provides a Robust Bayesian Prediction model for the prediction of estimates for outcome 

variable for a given value of explanatory variable in a Simple Linear Regression Model with error term 

distributed log-normally. Markov chain Monte Carlo (MCMC) simulation techniques are used to obtain the 

posterior estimates of unknown parameters and the predictive estimates of the response variable are obtained 

using extension of simulation in the regression techniques under the violation of the normality assumption. The 

present paper provides Bayesian linear regression approach using Gibbs sampling to make prediction about the 

response variable for a given value of explanatory variable under the assumption of non-Gaussian error terms. 

As in a Bayesian paradigm, the population parameters are treated as random variables and often consists of 

complex statistical models, the OpenBUGS (i.e., Bayesian inference Using Gibbs Sampling) software 

application is brought in use for the estimation of various parameters using the R2OpenBUGS package of 

RStudio. 

Keywords - Bayesian linear regression, Non-normal distribution, Posterior Predictive Estimates, Gibbs 
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I. INTRODUCTION 
The real-life data in many fields of Health, 

Education, and the Social Sciences sectors mostly 

deviate from normal behavior and the distribution of 

random noise depart from the normality assumption. 

In such cases making predictions of the response 

variable for a particular explanatory variable through 

the Ordinary Least Squares regression might give us 

misleading results. Under such circumstances, the 

proposed Bayesian prediction model can be easily 

applied for providing predictive estimates of the 

response variable for a given value of explanatory 

variable. The present paper provides a development 

of a Bayesian prediction model in simple linear 

regression (SLR) for the outcome variable when the 

random noise follows a log normal distribution 

instead of normal error. The consistency of results 

while predicting the future outcome variable is 

analysed and under such circumstances, a Robust 

Bayesian Prediction model is developed for the 

prediction of the outcome variable for given values 

of explanatory variable. The robustness of the model 

is observed in terms of Deviance Information 

Criterion (DIC) which ensures the future predictions 

and do not exert an undue influence on the 

inferences of the proposed model. In the present 

paper, Gibbs sampling which is a MCMC technique 

is suitably used. The open-source variant of 

WinBUGS (i.e., Bayesian inference Using Gibbs 

Sampling) is employed for the Bayesian analysis of 

such complex statistical models using Markov chain 

Monte Carlo (MCMC) methods. 

 

II. METHODOLOGY 
2.1 MODEL SPECIFICATION 

Let the data be a set of n observations { } of the 

dependent variable, with i =1, . . ., n and their 

associated vector { } being the predictor. We 

consider a linear regression model with an error term 

distributed according to lognormal distribution: 

  ;                                 

(2.1) 

 

and three unknown parameters α, β and  

:  outcome variable 

: explanatory variable 

: Random noise associated with the variable 

α: Intercept of the model 

β: Regression Coefficient of the model 
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2.2 MODEL TRANSFORMATION 

As suggested by Zellner [1], the response 

variable is transformed into a normal variable by 

using the natural log transformation considering 

= ln as the new transformed variable. Now, 

the transformed model is as follows: 

 

 ;                                                                  

(2.2) 

2.3 BAYESIAN ANALYSIS 

In Bayesian paradigm, Θ is the unknown 

quantity. Since there is uncertainty about the 

parameter, it is regarded as a random variable and a 

probability distribution is assigned to it, called the 

Prior distribution. The posterior density function 

includes the prior information about Θ in terms of 

prior distribution and the information contained in 

the data via likelihood function. Its distribution 

function is obtained by the following Bayes formula: 

                (2.3)                                                                         

where, P(Θ)is the prior distribution for the unknown 

parameter i.e., the strength of our belief about the 

parameters based on degree of belief. P(data| Θ) is 
the distribution function of the observations given 

the prior belief. P(data) is the evidence. This is the 

probability of data as determined by summing (or 

integrating) across all possible values of Θ, weighted 

by how strongly we believe in the values of Θ. The 

P(Θ|data) is the Posterior distribution representing 

the posterior beliefs about the parameters. 

2.4 PRIOR SPECIFICATION 

The vague normal prior for the parameters 

  and an inverse-gamma distribution on the 

variance were proposed by Spiegelhalter [2]. 

Thus, the prior specification for the model can be 

easily employed here as follows:   

  

 

 

  

 ; with 

shape and rate parameters respectively.              (2.4) 

 

2.5 BAYESIAN PREDICTION 

To estimate a future outcome value for a 

given pre-specified explanatory variable, the 

prediction in Bayesian framework for 

the  future response variable will involve 

the posterior knowledge of the parameters in the 

model, on clubbing the likelihood and the prior. 

These predictions are outcome values simulated 

from the posterior predictive distribution, which is 

the distribution of the unobserved (future) data given 

the set of observations of explanatory variable.   

Let,  (for i= n+1) be the next predicted outcome 

variable for a given value of  (for i =n+1): 

                                 (2.5)                                           

 

This , the value of future predicted outcome 

variable for a given value of explanatory variable 

for the observation is predicted 

using the simulation analysis.  

 

III. NUMERICAL ILLUSTRATION 
To demonstrate how to perform the analysis 

in R2Open BUGS package, the following real data 

set has been obtained from the Diabetes Care Centre, 

Lucknow. 

The dataset considered consists of N=287 

patients. There are 10 explanatory variables like 

Age, Gender, TC, TG, HDL, BMI etc. In the present 

study, the BMI is taken as a significant explanatory 

variable for predicting the Median Stiffness of Liver, 

the outcome variable. 
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Table 1: Numerical Illustration 

 

3.1 SUMMARY STATISTICS OF THE DATASET 

The following output is generated in RStudio for all the variables.

 

Table 2: Summary statistics of the dataset 

 

3.2 PLOTTING THE DISTRIBUTION OF THE 

RESPONSE VARIABLE 

The following figure illustrates empirical 

density plot of the outcome variable (before log 

transformation) and its cumulative distribution. 
 

Fig. 1: Empirical and Cumulative Distribution plot 

of the Response variable 
 

The plot of the response variable (Median 

stiffness) is highly positively skewed and resembles 

with a lognormal distribution. Furthermore, the 

betterment of fit of the response variable under the 

non-normality assumption for the error terms of the 

model (2.1) is computed. The table below illustrates 

goodness of fit test using Scipy library of Python. 

 

Table 3: Distributions listed by betterment of fit 

Distribution   chi_square 

lognorm    29.651 

invgauss    33.005 

weibull_min    41.827 

gamma    44.430 

pearson3    68.484 

expon    81.620 

beta   138.834 

triang   191.483 

weibull_max   237.978 

norm   361.013 

uniform   363.129 

Sr. 

No. 
Age Gender TC TG HDL LDL VLDL BMI HBA1C Duration 

Median 

Stiffness 

1 20 0 120.10 145.90 23.90 100.90 37.99 34.58 5.90 12.88 4.83 

2 21 0 150.61 215.89 120.34 210.34 44.49 27.39 10.10 15.87 13.58 

3 48 0 154.40 112.30 42.10 99.80 22.90 29.05 13.35 10.65 3.21 

4 51 1 187.81 218.15 58.24 107.95 51.19 27.40 10.08 12.91 4.84 

5 51 0 178.51 188.46 59.28 96.08 45.60 26.88 9.53 9.49 3.40 

6 53 1 170.80 179.60 67.20 157.20 67.89 27.37 6.20 14.93 12.11 

7 51 0 182.18 200.18 58.87 100.76 42.50 27.09 9.75 10.04 3.81 

… … … … … … … … … … … … 

… … … … … … … … … … …      … 

… … … … … … … … … … … … 

287 18 0 129.71 127.33 36.78 121.78 43.04 25.34 13.20 13.28 15.65 

 Min 1
st
 Quantile Median Mean 3

rd
Quantile Max 

Age 18.05 36.15 51.45 46.96 54.00 91.00 

Gender 0 0 0 0.39 1 1 

TC 36.00 144.80 180.00 175.30 187.80 376.40 

TG 40.00 161.50 199.00 195.50 216.80 511.30 

HDL 23.90 53.63 59.02 78.97 100.75 210.92 

LDL 26.48 100.83 115.79 138.68 185.59 311.20 

VLDL 15.68 36.94 43.34 49.68 47.64 185.49 

BMI 17.68 25.98 27.14 27.03 28.09 39.21 

HB1AC 5.00 7.50 9.55 9.27 10.02 16.40 

Duration 1.00 9.68 11.38 10.99 13.30 17.00 

Median 

Stiffness 
3.21 3.64 5.37 7.156 0.15 16.60 
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From this finding, it is evident that the log 

normal is observed to be of best fit with the least chi 

square value 29.65 as compared with the normal 

distribution having chi square value as 361.01. Thus, 

it clearly indicates the model contains errors 

distributed log-normally. 

 

IV. SIMULATION PROCEDURE 
        The RStudio, an integrated development 

environment (IDE) for R, a programming language 

for statistical computing and graphics is employed 

for the executions of functions interactively. As 

suggested by Edward Greenberg [3], the Bayesian 
Analysis with the help of OpenBUGS (Bayesian 

inference Using Gibbs Sampling), a popular 

software for analyzing complex statistical models 

using MCMC methods is employed. Here, we 

propose R2OpenBUGS package recommended by 

Gelman et al. [4] for the robust prediction for the 

model (2.5) under the violation of normality 

assumption.  

A BUGS model using the prior 

specification (2.4) and the regression model (2.2), 

the transformed model is set up in R using 

OpenBUGS software and the following analysis has 

been obtained. 

 

4.1 SUMMARY STATISTICS OF THE BUGS MODEL  

The following output table shows the 

posterior mean and standard deviation, a set of five 

quantiles for the parameters of the model, the 

Deviance Information Criterion (DIC) and the 

effective number of parameters (pD). The thinning 

interval is unity and three chains each of 9900 

sample size are performed for 10000 iterations. For 

each parameter, the respective convergence 

diagnostics, i.e., Rhat is also computed. 

 

 
 

It is hereby observed that the potential scale 

reduction factor i.e., Rhat converges to unity 

indicating that the marginal behavior of the chain is 

sufficiently close to stationarity. 

 

4.2 TRACE PLOTS AND DENSITY PLOTS OF 

POSTERIOR DISTRIBUTION 

4.2.1 The following output is generated within 

the CODA [5], a designed package for R to 

take BUGS output as input. 

 

Number of chains= 3 (green, red, blue) 

 
Fig. 2: Trace plots of the parameters 

 

The above figure illustrates that on convergence to 

its stationary distribution, the obtained Markov chain 

typically looks like a random scatter about some 

stable mean value. 

 

4.2.2 The following figure shows the plots of 

posterior densities of the parameters 

involved for each of the three chains. 

(generated using the CODA package with 

1000 iterations) 

Fig. 3: Plot of the posterior densities of the       

parameters for each of the three chains 
 

It is observed from the Fig. 3 that the posterior 

estimates of the parameters are almost normally 

distributed. 

 

4.3 PREDICTION SUMMARY 

The simulation-based estimate of the 

predictive value of the outcome variable is 

obtained. The resulting predicted value of the 

future outcome variable is computed for a 

particular value of BMI as the (n+1)
ths

 value in 

the dataset.  As the first case, the natural log of 

the Median Liver Stiffness (outcome variable) 

comes out to be 1.7303 for the given value of 

BMI as 25. The 95% credible intervals of the 

predicted mean value (1.65, 1.81) and predicted 

value (0.62, 2.79) for the given value of BMI = 

25 are also obtained by simulation in R. 
Similarly, we can generate predictive mean 

values and predicted values of Median Liver 

Stiffness for any value of BMI. 
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V. SIMULATION STUDY 
Computational algorithms of MCMC 

method are employed for obtaining numeric results. 

The Gibbs sampler [6] is one of the most widely 

used algorithms for simulating Markov chains. Thus, 

here, we perform Gibbs sampling using 

R2OpenBUGS package in R, a class of sampling 

algorithms in MCMC method and run an MCMC 

simulation to get estimates for the desired unknown 

parameters. The Deviance Information Criterion 

(DIC) [7] is the posterior mean of deviance plus the 

pD, the estimated effective number of parameters in 

the posterior distribution. Also, the potential scale 

reduction factor Rhat, indicates a good mixing of the 

three chains and thus approximate convergence 

gives the estimate of expected predicted error. The 

predicted value for the future outcome variable has 

been also obtained by extending the simulation of 

the model and accordingly, DIC for the model is also 

worked out. Further, Bayesian HPD credible 

interval, with probability 0.95 has been also 

computed for the estimates. 

VI. INFERENCE FROM THE BUGS 

MODEL 
6.1 THE POSTERIOR ESTIMATES AND THE 

CORRESPONDING HPD INTERVAL OF THE 

PARAMETERS 

The number of chains to be run (n.chain = 

3) and the number of iterations (n.iter = 10000) for 

each chain are specified. For each parameter, the 

summary statistics such as mean, standard deviation, 

its quantiles and convergence diagnostics are 

obtained. 

Deviance is the general measure of model 

adequacy. In most of the situations, many authors 

have suggested using the posterior mean deviance D 

= E[D] as a measure of fit. In our model the 

posterior mean deviance comes out to be 464.8 

 

 

 

 

 

Table 5: Posterior estimates and the Highest Posterior Density Interval of the parameters 

Thinning interval = 1, Sample size per chain = 

9900 

From this table the posterior estimates of alpha, 

beta and sigma are as follows: alpha= 1.81 (0.03), 

beta= 0.03 (0.01) and sigma= 0.54 (0.02) 

Highest Posterior Density interval (HPD) [8] is 

also computed and comes out to be the shortest 

interval among all the Bayesian credible intervals. 

It clearly indicates that the posterior estimates of 

alpha, beta, sigma obtained from Table 4 are 

highly supported in terms of the Highest Posterior 

Density interval (HPD) with Bayesian Credibility. 

 

6.2 POSTERIOR DENSITIES OF THE 

PARAMETERS 

Posterior density of the parameter helps 

to draw inferences of unknown quantity of 

interest. The simulation is performed and the 

resulting posterior density plots of the parameters 

alpha, beta and sigma are as follows: 

 

 

 

 
Fig 4: Plots of the posterior densities of the 

parameters alpha, beta and sigma. 

 

Posterior density estimates of the 

parameters alpha, beta, sigma resemble that of a 

normal distribution with the red dotted line 

representing the mean of the respective 

distributions. 

 

 

 Mean sd 25% 50% 97.5% Rhat HPD Interval (0.95) 

alpha 1.810 0.032 1.789 1.810 1.874 1.00094 (1.74,1.86) 

beta 0.035 0.011 0.027 0.035 0.058 1.00092 (0.012,0.05) 

sigma 0.544 0.023 0.528 0.543 0.591 1.001 (0.498,0.588) 

Deviance 464.806 2.465 463 464.2 471.102 1.001 (461.8,469.6) 

pD=3 

DIC=467.8 
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6.3 PREDICTED VALUE OF OUTCOME VARIABLE 

(MEDIAN LIVER STIFFNESS) FOR GIVEN 

VALUES OF EXPLANATORY VARIABLE (BMI) 

Different values are taken for BMI =25, 

26, 26.8, 27 and independent prediction of future 

outcome value y* are obtained for each value of 

BMI. After every prediction, the dataset is revised 

and the associated DIC’s are calculated for the 

model. 

Table 6: Predicted values of Median Stiffness for 

different values of BMI with their respective 

DIC’s 

 
PREDICTED 

VALUE OF 

MEDIAN 

STIFFNESS 

(𝐳𝒊) 

PREDICTED 

VALUE  

𝐲𝐢 ∗ 

(95%Credible 

Interval) 

  

BMI 

𝒙𝐢 ∗ 

EXPECTED 

PREDICTIVE 

ERROR  

(DIC) 

MEAN 

(95%Credible 

Interval) 

5.642 1.730 

(0.622, 2.795) 

25 467.8 1.735 

(1.65, 1.81) 

5.856 1.767 

(0.669, 2.836) 

26 467.8 1.772  

(1.705, 1.84) 

6.032 1.797 

(0.697, 2.867) 

26.8 467.8 1.802  

(1.739, 1.866) 

6.073 1.804 

(0.703, 2.875) 

27 467.8 1.809  

(1.747, 1.874) 
 

 
From the above table, we observe that the 

DIC remains constant which signifies model 

accuracy and the model stands out to be 

appropriate for further prediction. It will not be out 

of place to mention here that the Model is Robust 

in terms of DIC. 

 

6.4 POSTERIOR PREDICTIVE PLOTS  

6.4.1 The posterior predictive distribution [9] 

of the outcome variable using simulation 

is computed. 

 
Fig. 5: Posterior predictive distribution plot of 

response variable for explanatory variable= 25 

 

The above figure indicates that the 

posterior predictive plot of the outcome variable is 

approximately a normal distribution where the red 

dotted line indicates the mean of the distribution. 

 

 

 

6.4.2 The underlying plot illustrates the 

predictive density plot of the mean of the 

predicted distribution taking N= 2160000 

 

 

 
Fig. 6: Posterior predictive distribution plot of the 

mean of predicted distribution. 

 

6.4.3 For the robustness of the model, posterior 

predictive density of the outcome variable for 

different values of explanatory variable (BMI) 

as 25, 26, 26.8, 27 is shown below. 

 

 
Fig. 7: Posterior predictive distribution plots of 

response variable for different values of 

explanatory variable 

 

From the above plot, we observe that 

each distribution plot is almost same which shows 

the model is robust with respect to DIC. 

 

VII. CONCLUSION 
DIC is a hierarchical modelling 

generalization of the Akaike information criterion 

(AIC). Thus, a Bayesian Simple linear regression 

model is developed under the violation of 

normality assumptions for the error terms. The 

outcome variable “Median Stiffness of the liver” is 

predicted for different values of given explanatory 

variable “BMI” in this case. Since the DIC of the 

Bayesian model remains constant and does not 

increase throughout while predicting the Median 

Stiffness for any other value of BMI, it clearly 

indicates model accuracy and shows the 

robustness of the model in terms of DIC. Thus, the 

proposed Bayesian prediction model is 

recommended for the prediction of an outcome 
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variable under the violation of normality 

assumption. 
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