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ABSTRACT 
The paper studies the use of fuzzy arithmetic for correlation analysis. The implementation of the principal 

component method with fuzzy and incomplete data is considered. The author offers a new approach based on 

fuzzy gradations, which allows us to perform arithmetic operations directly. The advantages of the proposed 

approach are analyzed. This approach allows us to generalize the analysis scheme in case of uncertainty, to 

process together quantitative and qualitative data and smooth errors associated with data inconsistency; it 

significantly reduces the complexity of the analysis and provides an objective criterion for completing the 

procedure.  

Article Highlights 

Detection of the relationships between quantities and identification of their causes in case of fuzzy, inconsistent 

initial information. 

Making reliable decisions by a few (2 or 3) of the most important criteria. 

The proposed approach makes it possible to reduce the complexity and time of analysis, calculation and 

conclusions. 
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I. INTRODUCTION 
The main applications of correlation 

analysis are the establishment of interconnections 

and the mutual influence of parameters in systems, 

the determination of significant factors in regression 

models. One of the important applications of 

correlation analysis is the detection of “hidden” 

parameters from directly observable quantities. The 

most advanced is statistical correlation analysis. The 

theoretical foundations of statistical correlation 

analysis and its applications are given in works [4, 

10]. The use of serial correlation in the analysis of 

time series is considered in [1]. The method of 

principal components and methods of factor analysis 

were studied in [3]. The use of statistical correlation 

analysis is associated with a number of rather strong 

restrictions. Quantitative and qualitative data are 

processed separately, after which they are 

compared. The result strongly depends on the 

accuracy of the experimental data. For example, to 

determine the Spearman's rank correlation 

coefficient used in processing qualitative data, with 

an error of 10%, the number of objects must be at 

least 100; for calculation of typical numerical 

correlation coefficient, the amount of data is even 

greater. In real situations, we have to deal with a 

smaller amount of data, which increases the error in 

determining the correlation coefficient. When 

calculating the correlation coefficient, the quantities 

should have a normal distribution or close to 

normal. The use of nonparametric methods requires 

a large number of measurements; otherwise, it leads 

to inaccurate conclusions [10, 17]. The correlation 

coefficient gives a linear approximation and takes 

into account only the linear relationship of 

quantities. In a real situation, with a large number of 

variables, the relationships are more complex and 

can include nonlinear terms and interactions, which 

affect the value of the correlation coefficient and 

increase the error. In many cases, information about 

objects and criteria is incomplete, heterogeneous, 

and there is uncertainty in the evaluation of objects 

by criteria. Therefore, accurate numerical 

calculations do not make sense. In this case, fuzzy 

correlation analysis based on fuzzy set theory is 

used. The theoretical foundations of fuzzy 

correlation analysis are given in [6, 7]. The 

calculations use the Zadeh generalization principle 

and the approximation of the membership function 

by various distributions or its discrete representation 

[2, 5, 8, 9, 11, 12]. This approach does not allow us 

to take full advantage of fuzzy data representation. 

With a large number of variables, the calculations 

are cumbersome; the results are not very clear and 

difficult to interpret. In the problems of correlation 
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analysis, associated with the choice of essential 

factors and the analysis of their influence on the 

result, the specific numerical content of the 

quantities often does not matter, but only the order 

relation between them. The article uses the approach 

proposed by the author, based on fuzzy gradations, 

which allows us to perform calculations without 

being tied to a numeric context. The purpose of the 

article is to develop a methodology for correlation 

analysis using fuzzy arithmetic, in particular, when 

detecting hidden parameters. The proposed 

approach uses the representation of data in the form 

of fuzzy gradations, which makes it possible to 

generalize the analysis scheme in case of 

uncertainty, significantly reduces the complexity of 

the analysis and provides an objective criterion for 

the completion of the analysis procedure. The article 

is based on the author's previous results related to 

the implementation of the rules of fuzzy arithmetic 

[14 – 16].  

The article is organized as follows. First, 

we briefly consider the rules of fuzzy arithmetic and 

the evaluation of the reliability (certainty) of the 

results. Then the correlation analysis algorithm is 

generalized for the case of data representation in the 

form of fuzzy gradations. Further, using an example, 

we consider the methodology of applying 

correlation analysis in the method of principal 

components. Finally, we discuss the obtained results 

and give recommendations for their application. 

 

II. ARITHMETIC OPERATIONS ON 

FUZZY GRADATIONS AND 

RELIABILITY EVALUATION 
To describe the object area we use the 

fuzzy gradations in the range VL…VH. The range 

includes gradations VL – very low value, (VL-L) – 

between very low and low, L – low, (L-M) – 

between low and middle, M – middle (medium), 

(M-H) – between middle and high, H – high, (H-

VH) – between high and very high, VH – very high. 

Boundary gradations out of range are also known, 

namely VVL (lowest value) and VVH (highest 

value). Depending on condition of the task gradation 

VVL can be interpreted as zero, lower bound, exact 

lower bound etc. and gradation VVH – as unit, 

infinity, upper bound, exact upper bound, etc. Fuzzy 

gradations form an ordinal scale in which an 

admissible transformation is arbitrary monotone 

function that does not change the order of 

gradations. This is another advantage of using fuzzy 

gradations. In particular, all gradations can be 

simultaneously multiplied or divided, as well as 

increased or decreased by the same number, so that 

the values do not go beyond the range 0 ... 1. The 

rules of fuzzy arithmetic and the evaluation of the 

reliability of the results are considered in the 

previous works of the author, so we give them here 

in abbreviated form to make the results of 

calculations clear. The summation and 

multiplication operations on fuzzy gradations are 

performed in the same way as in ordinary 

arithmetic. For instance, for summation we have 

VL + VL = (VL-L), (VL-L) + VL = L, etc., (H-

VH) + VL = VH, VH + VL = VVH. Similarly, 

summation is performed for other fuzzy gradations. 

For multiplication operation we have VL * VL = 

VVL, VL * (VL-L) = VVL, etc., VL * M = VL, 

etc., VL * VH = VL. Similarly, multiplication is 

performed for other fuzzy gradations. In 

calculations, it makes no sense to introduce small 

gradation shares, and rounding should be used 

towards the nearest gradation, since this does not 

affect the accuracy of the final results. When the 

number of factors (summands) is more than two, the 

result is determined similarly. The process quickly 

converges as the number of components (factors or 

summands) increases; so for three to four 

components, the extreme limits of the range are 

reached. We can also determine the results for 

inverse operations (subtraction and division). When 

performing calculations, multiplication or division 

by an integer or rational number are defined using 

the summation operation. Subtraction and division 

operations are defined through the operations of 

addition and multiplication, respectively. The 

exponentiation and root extraction operations are 

defined through the multiplication operation. 

Calculations can be performed directly in fuzzy 

gradations or using modal values corresponding to 

fuzzy gradations, with the subsequent representation 

of the numerical results in the form of fuzzy 

gradations. Calculations on fuzzy gradations are 

greatly simplified if all gradations are expressed in 

terms of the smallest gradation (VL), namely, (VL-

L) = 2VL, L = 3VL, etc., VH = 9VL, VVH = 10VL. 

This representation makes it possible to extend 

calculations formally outside the range 0 ... 1. We 

use this technique in subsequent calculations. We 

now estimate the reliability of the results of 

calculations on fuzzy gradations. Designate x, y, etc. 

– the values represented as fuzzy gradations; νx, νy, 

etc. − the indexes of fuzziness corresponding to 

values x, y, etc., respectively, are also represented in 

the form of fuzzy gradations. Each gradation is a 

function value of which is concentrated in the center 

of the corresponding interval, and the value of the 

membership function is 1. In this sense, the 

accuracy of determining the gradation is equal to 

1(the index of fuzziness is 0), if it is not stipulated 

special conditions. We consider the distribution on 

the gradations. The accuracy (certainty) of the result 

is defined as for fuzzy set elements of which are 
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individual gradations. For the index of fuzziness, we 

use two expressions. The first of these has the form  

2min( , )x x x  ,   (1) 

where x  – the opposite value to x; for example, if 

x = VL, then x = VH etc. Multiplication by the 

number 2 is understood as the summation of two 

equal values represented as fuzzy gradations. The 

expression (1) corresponds to the strong condition 

β > ν, or 

β > H (0.7),    (2) 

where β is an estimate in the form of fuzzy 

gradation for the result r or r . The result is value 

of x or its reliability. Here and below in parentheses 

the numerical value corresponding to the maximum 

(modal value) of the gradation is indicated. The 

second expression for the fuzziness index has the 

form  

min( , )x x  ,   (3) 

which corresponds to a softer condition β > ν/2 or 

β > M (0.5).     (4) 

 

III. ALGORITHM OF CORRELATION 

ANALYSIS 
We formulate the problem as follows. 

Given the set of objects X = {x1,…, xm}, which are 

evaluated according to the set of criteria (features, 

properties) K1,…, Kn, represented by fuzzy 

gradations in the range [VL, VH]. It is required to 

determine the correlation (interdependence) between 

the criteria and its possible causes. The solution 

algorithm includes the following steps: 

1. The initial quantitative and qualitative 

information about objects and criteria, obtained 

using measurements and expert methods, is 

transformed into fuzzy gradations as follows. Each 

named variable is assigned a standardized 

(normalized) variable, varying in the interval [0, 1]. 

Then a fuzzy gradation is assigned to the 

standardized variable. In this case, the value 0 

corresponds to the gradation VVL (the lowest 

value), and the value 1 corresponds to the gradation 

VVH (the highest value). A value of 0.1 

corresponds to the modal value of the VL gradation 

(very low value); similarly a value of 0.3 – 

gradation of L (low value); a value of 0.5 – 

gradation M (middle value); the value of 0.7 – 

gradation H (high value), the value of 0.9 – 

gradation VH (very high value). The transition from 

physical to standardized variable is determined by 

the ratio x = (z – zmin)/(zmax – zmin) ± 0.1, where the 

plus sign corresponds to the value of zmin, and the 

minus sign to the value of zmax. Here x is a 

standardized variable from the interval (0, 1); z is a 

"physical" variable, determined by measurement or 

expert method, which takes values in the interval 

[zmin, zmax]. Its values are represented by named 

numbers or dimensionless estimates. 

2. The correlation coefficient is determined for each 

pair of criteria from a known ratio modified for our 

case with the only difference that all values are 

represented in the form of fuzzy gradations:  
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(5) 

 

The subscript in (5) corresponds to the object, and 

the superscript to the criterion. The line at the top 

indicates the mean value. Calculations are 

performed using the fuzzy arithmetic rules (see 

above).  

3. Objects are distributed in groups in accordance 

with the values of the correlation coefficient. 

4. To identify "hidden" parameters, the principal 

component method is used. 

5. Based on the results of the analysis, a conclusion 

is made on the possible causes of the observed 

relationships. 

 

IV. EXAMPLE OF STUDY 
Consider an example. Let the initial data 

are given in table 1. The specific interpretation of 

quantities (objects and criteria) depends on the 

subject area and does not matter for subsequent 

calculations. It is assumed that the error of estimates 

in the table 1 is about one gradation (does not 

exceed one gradation). Based on the initial data, the 

correlation coefficient was calculated using the 

relation (5). The results of the calculations are given 

in table 2. We will give examples of calculating the 

values from tables 1 and 2. Calculate the mean 

values K  in table 1. For the value of 
1K  we get 

1K = [2(L-M) + 6M + (VL-L) + 3H + 4(M-H) + (H-

VH) + VH + 2VL]/20 = 104VL/20 = 5VL = M. For 
2K  we have 

2K = [5M + (L-M) + 4L + 3(VL-

L) + H + 3VL + (M-H) + (H-VH) + VH]/20 =  

 = 80VL/20 = 4VL = L-M. The remaining mean 

values are calculated similarly. Calculate values of 

ρlm in table 2. From (5) it follows that on the main 

diagonal of table 2 all values ρll = 1 = VVH. 

Calculate ρ12 based on the data from the first and 

second columns of table 1. We write ρ12 in the form 

ρ12 = B12/(B1 * B2)
1/2

. From (5) we obtain B12 = ((L-

M) – M)*(M – (L-M)) + … + (H – M)*((VH – (L- 

M)) = (– VL) * VL +…+ 2VL * 5VL= 34(VL)
2
; 

B1=((L-M) – M)
2
 + … + (H – M)

2 
=(VL)

2 
+  … + 

(2VL)
2  = 83(VL)

2
; B2 = (M–(L-M))

2
 + … + (VH –

(L-M))
2
 = (VL)

2
  + … + (5VL)

2  = 104(VL)
2
. For 

the coefficient ρ12 we obtain ρ12 = ρ21 = 
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34(VL)
2
/((83*104)

1/2
(VL)

2
) = 0,4 = L-M (with 

rounding). The rest of the values in table 2 are 

calculated similarly.  

 

Table 1 

Initial data for an example 

Objects 
Criteria 

K
1

 K
2

 K
3
 K

4
 K

5
 K

6
 K

7
 

x1 L-M M M-H L-M VL-L VL-L L 

x2 M M L-M L-M H-VH L-M M-H 

x3 M L-M L VL-L M-H VL-L VL 

x4 M L M VL-L M VL-L VL 

x5 M VL-L L-M L-M L-M L VL-L 

x6 VL-L VL-L L L VL-L L VL 

x7 M H L L-M H-VH L-M VL 

x8 H M VH H-VH L-M VH H 

x9 M-H M M VH VH VL-L VL-L 

x10 H-VH L VL VL-L VH L-M VL 

x11 M-H L L-M VL VH L-M VL 

x12 L-M L L-M L M VL VL 

x13 H VL VL-L L H-VH VL VL 

x14 VH M-H M L-M L-M M M-H 

x15 M-H H-VH VL-L L VL VL-L VL 

x16 M-H VL Н VL-L L-M L-M VL 

x17 VL VL VL L L L VL 

x18 VL VL-L M VL-L L VL-L VL-L 

x19 M M L L H L VL-L 

x20 H VH H VL M-H VL-L VL 

K  M L-M L-M L M L VL-L 

 

Table 2 

Correlation coefficients matrix 

 K
1

 K
2

 K
3
 K

4
 K

5
 K

6
 K

7
 

K
1

 VVH L-M VL-L VL-L L-M L-M L 

K
2

 L-M VVH L-M VL-L VL VL VL-L 

K
3

 VL-L L-M VVH L-M VL

 M M 

K
4

 VL-L VL-L L-M VVH VL L-M M-H 

K
5

 L-M VL VL

 VL VVH VVL VL


 

K
6

 L-M VL M L-M VVL VVH H 

K
7

 L VL-L M M-H VL

 H VVH 

 

Note. Hereinafter, the following notation is used: 

VVL is the value corresponding to 0, VVH is the 

value corresponding to 1; the minus sign at the top 

means that the gradation is located to the left of the 

VVL (has a negative value). 

 

To determine the "hidden" parameters, we 

use the principal component method. It is required 

to bring the correlation matrix to a diagonal form by 

solving the equation AX X , where A is the 

correlation matrix,  – the proper numbers playing 

the role of hidden parameters, X – the eigenvectors. 

The solution is carried out iteratively, and all 

calculations are performed in fuzzy gradations. To 

calculate the first eigenvalue 1, the standard 

procedure is used. First the sums of the rows in the 

table 2 are determined, and the largest value is taken 

as the first approximation for 1. Then all sums are 

divided by the largest value and the obtained 

normalized values are taken in the first 

approximation as components of the first 

eigenvector. The process is repeated until the value 

of the vector becomes constant. It should be noted 

that a total of 4 to 5 iterations are required to 

determine 1, i.e. less than with numerical 

calculations using traditional methods. This is 

understandable, since smoothed data is used. In 

addition, random errors within the gradation have 

practically no effect on the result. The calculations 

give 1 = H/M
2
, which corresponds to a numerical 
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value 1 = 7VL/25(VL)
2 
= 2.8. Hereinafter, 

numerical estimates are given for convenience of 

comparison with the traditional method. The 

eigenvalue 1 corresponds to the eigenvector having 

seven components X1 = ((M-H), M, H, H, VL, (H-

VH), (H-VH)). The matrix of correlation 

coefficients of the first parameter (factor) is given in 

table 3. 

 

Table 3 

The matrix of the correlation coefficients of the first parameter 

X1 M-H M  H  H  VL  H-VH H-VH 

M-H L-M L L-M L-M VL M M 

M  L VL-L L-M L-M VL L-M L-M 

H L-M L-M M M VL M-H M-H 

H  L-M L-M M M VL M-H M-H 

VL  VL VL VL VL VVL VL VL 

H-VH M L-M M-H M-H VL M-H M-H 

H-VH M L-M M-H M-H VL M-H M-H 

 

To exclude the influence of the first 

parameter, we subtract from the matrix in table 2 

matrix represented in table 3, which gives the first 

residual matrix after the exclusion of the first 

parameter. The resulting matrix is represented in 

table 4. According to the data of this matrix, the 

second eigenvalue 2 and the corresponding vector 

X2 are calculated. Calculations are performed 

similarly to calculations for 1 and X1. We have 

2 = H/M, which corresponds to a numerical value 

2 = 7VL/5VL = 1.4. The eigenvector X2, 

corresponding to 2, has the form X2 = ((M-H), (L-

M), L
 

, VL

, (H-VH), (VL-L)


, L


); 5 or 6 iterations 

are enough to calculate it. Further calculations are 

performed similarly to the previous one. The 

correlation matrix of the coefficients of the second 

parameter (factor) is given in table 5. To exclude the 

second parameter, subtract from the matrix in table 

4 matrix represented in table 5, which gives the 

residual matrix after eliminating the second 

parameter. The resulting matrix is given in table 6. 

Table 6 shows that the sum of the elements in the 

rows of this matrix is one or two gradations; then it 

is within the error. Moreover, none of the matrix 

elements exceeds the gradation H (high value), i.e. 

reliability condition (2) is not satisfied (see above). 
Therefore, further calculations are unreliable, and it 

is sufficient to restrict by two eigenvalues, the 

contribution of which is 

(H/M
2
 + H/M)/(H/VL) = 0,6. The error of estimates 

in a matrix increases with increasing parameter 

number. It has a particularly strong effect on the 

accuracy of determining eigenvectors, starting with 

X3; the error affects the accuracy of the calculation 

of eigenvalues less, since they are determined by the 

maximum value of the sum in the rows of the 

corresponding matrix. Therefore, to estimate the 

order of values, we considered it sufficient to 

calculate only the eigenvalues. Calculations give 

3 = M/M, 4 = H, 5 = L-M. The last value is below 

the confidence threshold, so the calculations of 6 

and 7 do not make sense.  

 

Table 4 

Residual matrix after exclusion of the first parameter 

 K
1

 K
2

 K
3
 K

4
 K

5
 K

6
 K

7
 

K
1

 M-H VL (VL-L)

 (VL-L)


 L VL


 (VL-L)


 

K
2

 VL H-VH VVL (VL-L)

 VVL L


 (VL-L)


 

K
3

 (VL-L)

 VVL M VL


 (VL-L)


 VL


 VL


 

K
4

 (VL-L)

 (VL-L)


 VL


 M VVL (VL-L)


 VVL 

K
5

 L VVL (VL-L)

 VVL VVH VL


 (VL-L)


 

K
6

 VL

 L


 VL


 (VL-L)


 VL


 L-M VL 

K
7

 (VL-L)

 (VL-L)


 VL


 VVL (VL-L)


 VL L-M 
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Table 5 

The matrix of the correlation coefficients of the second parameter 

X2 M-H L-M  L

 VL


 H-VH  (VL-L)


 L


 

M-H L-M VL-L (VL-L)

 VL


 M VL


 (VL-L)


 

L-M  VL-L VL-L VL

 VVL L VL


 VL


 

L


 (VL-L)

 VL


 VL VVL (VL-L)


 VL VL 

VL

  VL


 VVL VVL VVL VL


 VVL VVL 

H-VH M L (VL-L)

 VL


 M-H (VL-L)


 (VL-L)


 

(VL-L)


 VL

 VL


 VL VVL (VL-L)


 VVL VL 

L


 (VL-L)

 VL


 VL VVL (VL-L)


 VL VL 

 

Table 6 

Residual matrix after elimination of the second parameter 

 K
1

 K
2

 K
3
 K

4
 K

5
 K

6
 K

7
 

K
1

 VL-L VL

 VVL VL


 (VL-L)


 VVL VVL 

K
2

 VL

 M-H VL (VL-L)


 L


 (VL-L)


 VL


 

K
3

 VVL VL L-M VL

 VVL (VL-L)


 (VL-L)


 

K
4

 VL

 (VL-L)


 VL


 M VL (VL-L)


 VVL 

K
5

 (VL-L)

 L


 VVL VL L-M VL VVL 

K
6

 VVL (VL-L)

 (VL-L)


 (VL-L)


 VL L-M VVL 

K
7

 VVL VL

 (VL-L)


 VVL VVL VVL L 

 

V. DISCUSSION OF THE RESULTS 
Thus, from the above consideration it 

follows that the first two eigenvalues and the 

corresponding eigenvectors are determined reliably. 

This establishes an objective criterion for 

completing the calculation procedure. When using 

fuzzy gradations, all results are obtained with fewer 

iterations than when using numerical data or data 

using a membership function, much less laborious, 

which is important when processing large data 

arrays. As for the interpretation of the causes of 

relationships, it is determined by the subject area. 

For example, when analyzing the quality of 

learning, the hidden parameters can be abilities and 

interest in learning. When analyzing product quality, 

hidden parameters can be the level of technology 

and the quality of raw materials. In diagnosing 

diseases – heredity and systemic changes in the 

body. In technical diagnostics – wear of materials 

and defects in subsystems. In the analysis of the 

composition of mineral samples – the rate of 

crystallization of ores and the type of rocks being 

replaced. When analyzing economic problems 

(market), the hidden parameters can be solvency and 

the level of price regulation (pricing).  

Similar calculations were performed using 

the traditional numerical method and show good 

agreement with the results of this article (see [13]). 

The disadvantages of the traditional method are the 

laboriousness of the calculations, the considerable 

time costs, the strong dependence of the result on 

the errors of the initial data and the absence of an 

objective criterion for the end of the calculation 

procedure. 

 

VI. CONCLUSION 
The proposed approach makes it possible to 

use all advantages of fuzzy data representation and, 

at the same time, preserve clarity and certainty in 

the interpretation of the results obtained. The 

approach based on Zadeh generalization principle is 

practically inapplicable, or at least very difficult in 

correlation analysis. The main time consumption in 

our approach is the representation of the initial data 

in the form of fuzzy gradations. The results of 

calculations and conclusions obtained in the article 

depend mainly on the structure of the initial data. As 

directions for further research, it should be noted: 

study of the influence of the degree of data 

inconsistency on the results of the analysis; 

determination of the limiting capabilities of the 

proposed method; comparison of the calculation 

results and conclusions for the initial matrices, 

represented by gradations of different levels, 

namely, a low level (VL or L), an average level (L-

M, M or M-H) and a high level (H or VH). The 

proposed approach based on fuzzy gradations can be 

applied in the methods of factorial and cluster 

analysis. This approach can also be used for time 

series analysis; in this case, relation (5) with 
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