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ABSTRACT 
In this paper a dynamic phasor estimation algorithm is discussed with the help of tensor product, the proposed 

algorithm can have many qualities for dynamic conditions, it can have great simplicity as well as great robustness 

for dynamic as well for pure sine waves, phasor estimation process follows some simple procedure based on tensor 

product and linear algebra. The  potential of proposed phasor estimation algorithm is tested for different 

dynamic/noisy events as per IEEE C37.118.1-2011 standards, by observing the results  it can be said that the 

algorithm can perform well for dynamic/noisy conditions, the great advantages of algorithm can be its simple 

procedure of implementation, it can also be based on simple equations, which can make it easy to realize. For 

signal conditions like ramp event, modulation event, step event, as well noisy event the propose algorithm can 

have tremendous robustness and performance. Its simplicity and robustness can make the algorithm best suited 

for Wide Area Monitoring for measuring current as well voltage signal having various disturbances. 

Index Terms: Tensor product, phasor measurement units, wide area monitoring, smart grids. 
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I.INTRODUCTION 
Now a days smart grid has become very 

important need for ensuring greater stability and 

reliability of power system, the performance of smart 

grid depends on WAM (Wide area measurement), as 

WAMS are important stages of smart grid, hence 

more focus is needed to get better efficiency and 

reliability of smart grids. Phasor measurement units 

are vital part of any WAM, PMU’S are used to get 

fundamental phasors from distorted as well pure 

sinusoidal waves, that means PMU’S are able to give  

fundamental magnitude, phase, frequency as well as 

rate of change of frequency from a input signal. The 

input signal may be distorted from modulation event, 

frequency ramp event, noise event, and step events 

also. These all disturbances have been taken into 

account, and potential of the proposed algorithm is 

tested, as per IEEE C37.118.1-2011 standards.  

 

II. LITERATURE SURVEY 
There are numerous literatures [1], [2], [3], 

[4], [5], [6], [7], [8] present to estimate phasors for 

dynamic conditions, There are significant differences 

among them. The phasor estimation based on DFT 

and least error square algorithm are very old 

techniques and best suited for pure sinusoidal signal, 

but for dynamic events, the algorithm fails to get 

fundamental phasor, for dynamic events DFT and 

least square algorithms can be used with filters, then 

it will lead to huge cost requirement, all these 

demerits made above algorithms unsuitable for 

estimation of dynamic phasors. 

In [1], algorithm based on taylor series 

expansion is discussed, the dynamic phasor within an 

observation data window is approximated by 2nd 

order taylor expansion. 

In [2], a phasor estimation algorithm based 

on Hilbert transform and convolution is discussed, the 

algorithm is suitable for P-class PMU in protection 

application. In [3], dynamic phasor estimator based 

on subspace technique is proposed and high sampling 

rate and few modifications in the subspace-based 

techniques are suggested to estimate the voltage 

phasor with a fundamental frequency component 

without using antialiasing filter to the input signal. In 

[4], two fast and precise dynamic phasor estimation 

algorithms under oscillations and off nominal 

conditions are discussed, The methods use the signal 

model under these dynamic conditions, linearize them 

by using Taylor’s series expansion, and estimate the 

phasor using least squares technique. Frequency and 

its rate of change are also calculated using adjacent 

phasors with minimum complexity. The above 

discussed literatures introduce a model based 

algorithm, and that contains various complex steps to 

find out phasor phasor of the signal, with requiring 

large no. of samples which makes them difficult to 

use practically and would cost heavy price. 

Hence keeping all these requirements in 

consideration a novel phasor estimation technique can 

be introduced, which would not require any filter for 

dynamic phasor estimation, also it will give very good 

performance and will be based on simple procedures. 
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III. DYNAMIC PHASOR ESTIMATOR 
Tensors  were introduced in 1940s and 

1950s by G.kron for use in circuit theory only, tensors 

can also be used in areas of signal processing, image 

processing[1]. 

Here one of the properties of tensors is used 

for phasor estimation in PMU, normally tensors are 

multidimensional matrix having various 

informations. That property of tensor is used here to 

get fundamental informations from a signal, Here 

tensor product or kroncker product is discussed. 

Assume a sinusoidal wave 

 

X(t) = Xmsin⁡(2πft + θ)                                                        
(1)                                                                    

 

Where⁡X(t)=input signal, Xm=peak magnitude of the 

signal, θ=phase angle, f=fundamental frequency, 

t=time, 

To prove the algorithm Taking N=4 samples 

Assume 2πf = w 

In matrix form of above sine wave after sampling can 

be written as 

x(n) =

[
 
 
 
 

sin⁡(θ)
sin⁡(wn1 + θ)
sin⁡(wn2 + θ)
sin⁡(wn3 + θ)
sin⁡(wn4 + θ)]

 
 
 
 

                                                         

(2)                                                                              

finding out Tensor product of equation (2) with itself 

 

x(n)⨂x(n) =

[
 
 
 
 

sin⁡(θ)
sin⁡(wn1 + θ)

sin⁡(wn2 + θ)
sin⁡(wn3 + θ)
sin⁡(wn4 + θ)]

 
 
 
 

⨂

[
 
 
 
 

sin⁡(θ)
sin⁡(wn1 + θ)

sin⁡(wn2 + θ)
sin⁡(wn3 + θ)
sin⁡(wn4 + θ)]

 
 
 
 

               

(3)                                                         

Size of tensor spectrum depends on number of 

samples taken like 

Signal has 1 × (N + 1) size 

Size of Tensor spectrum = 1 × 25 

T(n) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sin(θ) sin⁡(θ)

sin(θ) sin⁡(wn1 + θ)

sin(θ) sin⁡(wn2 + θ)

sin(θ) sin⁡(wn3 + θ)

sin(θ) sin(wn4 + θ)

sin(wn1 + θ) sin(θ)

sin(wn1 + θ)⁡sin⁡(wn1 + θ)

sin(wn1 + θ) sin(wn2 + θ)

sin(wn1 + θ) sin(wn3 + θ)

sin(wn1 + θ) sin(wn4 + θ)

sin(wn2 + θ) sin(θ)

sin(wn2 + θ) sin(wn1 + θ)

sin(wn2 + θ) sin(wn2 + θ)

sin(wn2 + θ) sin(wn3 + θ)

sin(wn2 + θ) sin(wn4 + θ)

sin(wn3 + θ) sin(θ)

sin(wn3 + θ) sin(wn1 + θ)

sin(wn3 + θ) sin(wn2 + θ)

sin(wn3 + θ) sin(wn3 + θ)

sin(wn3 + θ) sin(wn4 + θ)

sin(wn4 + θ) sin(θ)

sin(wn4 + θ) sin(wn1 + θ)

sin(wn4 + θ) sin(wn2 + θ)

sin(wn4 + θ) sin(wn3 + θ)

sin(wn4 + θ) sin(wn4 + θ) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 

(4)                                                                                              

 

And we are finding Tensor product of signal with 

itself, hence Tensor spectrum will have the size of 

1 × N2 

Generalized equation to find out samples containing 

fundamental phase in Tensor spectrum of sine wave 

with itself -Assume N samples are taken hence 

starting sample number = ((N + 1) ×
N

2
) + 1 

Ending sample number ((N + 1) ×
N

2
) + 1+N, 

Hence samples between starting sample and ending 

sample will contain fundamental signal 

Starting sample number =⁡((4 + 1) ×
4

2
) + 1 = 11 

Ending sample number = ((4 + 1) ×
4

2
) + 1+4 = 15 

Samples containing fundamental = 11th ,12th ,13th ,14th 

,and 15th of  T(n), Now adding the samples containing 

fundamental 

 

F(n)=sin(wn2 + θ) sin(θ) + sin(wn2 +
θ) sin(wn1 + θ)+⁡sin(wn2 + θ) sin(wn2 + θ) 

+⁡sin(wn2 + θ) sin(wn3 + θ)+⁡sin(wn2 +
θ) sin(wn4 + θ)                                                                                            

(5) 

 

Taking out ⁡sin(wn2 + θ) common from equation (5) 

we can re-write the equation (5) 
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F(n) = sin(wn2 + θ) [sin(θ) + sin(wn1 + θ) +
sin(wn2 + θ) + sin(wn3 + θ) + sin⁡(wn4 + θ)]                 
(6) 

 

From equation (2) we can write equation (6) as 

F(n) = K x(n)                                                                   (7)                                                                                                                                          

Where x(n)is fundamental sine wave, and K =
sin⁡(wn2 + θ) will have some constant value 

 
Fig.1: Tensor spectrum with 4 samples 

 

From figure (1), it can be seen that the 

fundamental wave is contained within 11 to 15 

samples, the minimum value of that small spectrum is 

to be found out and location of that minimum value is 

to be tracked which gives relationship between phase 

angle and location of small spectrum. 

Like this if N=8 samples fundamental sine 

wave can be found in tensor spectrum by adding 

samples from  

Starting sample number =⁡((8 + 1) ×
8

2
) + 1 = 37 

Ending sample number = ((8 + 1) ×
8

2
) + 1+8 = 45 

Here tensor spectrum will have size of 1 × (9 ×
9)=1 × 81 

 
Fig.2: Tensor spectrum with 8 samples 

 

 
Fig.3: Tensor spectrum with 32 samples 

 

 
Fig.4: Fundamental view of tensor spectrum with 32 

samples 

 

In this paper N=256 is taken hence  

Starting sample number =⁡((256 + 1) ×
256

2
) + 1= 

32897 

Ending sample number = ((256 + 1) ×
256

2
) +

1+256= 33153 

Here tensor spectrum will have size of 

 

 1 × (257 × 257)=1 × 66049 

 

Here F(n) can be found by adding samples from 

sample  number 32897 to sample number 33153 

 

 
Fig.5: Fundamental view of tensor spectrum with 

256 samples 

So it can be witnessed from above tensor 
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spectrum that peak value of the spectrum is constant 

which is square of fundamental magnitude taken, 

hence the magnitude can be found by taking square 

root of peak value of tensor spectrum and also by 

taking minimum value of F(n) and finding out its 

location in X-axis with respect to phase change, 

relation between phase change and location of small 

value of fundamental spectrum in X-axis can be 

obtained as it can be seen it gives linear relation. 

 
Fig.6: Location of small spectrum for pure sine 

wave 

 

Fig (6) shows the relation between change of 

location of fundamental spectrum with respect to 

phase angle variation for pure sinusoidal wave. It can 

be observed from fig (7),(8),(9),(10) that for dynamic 

signal also the algorithm gives linear relation with 

phase change which is desirable. 

 

TABLE-1 signals used 

Signals Equations 

Sine wave x(t) = Xmsin(2πft + θ) 

Step change 

event 
x(t)

= Xm(1 + KxsU1(t))sin(2πft

+ KasU1(t) + θ) 

Frequency 

ramp event 
x(t) = Xmsin(2πft + πRft

2

+ θ) 
Modulation 

event 
x(t)
= Xm(1 + Kxmsin(2πfm
+ θ))sin(2πft
+ Kamsin(2πfmt) + θ) 

Noise event x(t) = Xsin(2πft + θ) + ε 

 

In table (1) x(t)=input signal, Xm=peak magnitude of 

the signal, θ=phase angle, f=fundamental frequency, 

t=time, Kxm=modulation index, Kam=phase 

sensitivity, fm=modulation frequency, Rf=frequency 

ramp rate, Kxs=magnitude step size, Kas= phase step 

size, U1(t)=unit step signal, ε=Gaussian noise present 

in the signal 

 

TABLE-2 specifications used 

Parameter Notation Specifications 

Nominal 

magnitude 
Xm 5 volts 

Nominal 

frequency 
f 50Hz 

Phase angle θ 30 Degree 

Phase angle 

sensitivity 
Kam 0.1 

Modulation 

frequency 
fm 0.2 to 2 Hz 

Step change 

size 
Kxs 0.1 

Phase step 

size 
Kas 0.1 

Noise ε 15 db to 50 

db SNR 

 

In this work, the following specifications as 

shown in Table 2 are taken to test proposed phasor 

estimation algorithms. The proposed algorithm is able 

to estimate one phasor per cycle at a sampling rate of 

256 samples per cycle. 

 

 
 

Fig.7: Change of location of small spectrum for 

frequency ramp event 

 
Fig.8: Change of location of small spectrum for 

noise event 
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Fig.9: Change of location of small spectrum for 

modualtion event 

 

 
Fig.10: Change of location of small spectrum for 

step event 

        

IV.CONCLUSION 

This paper presents potential of simplest and 

robust dynamic phasor estimation algorithm based on 

tensor product of signal with itself, the potential of 

algorithm has been successfully tested under 

compliance test recommended by IEEE C37.118.1-

2011 standards. results shows that the algorithm can 

be suitable for dynamic phasor estimation and can 

also be suitable for pure sinusoidal wave, also this 

algorithm can avoid use of model based and complex 

algorithms still in use. 
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