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ABSTRACT:  Recently, linear codes constructed from defining sets have been studied widely since they have 

many applications in cryptography and communication systems. In this paper, we consider a defining set 

 

where  for a positive integer  and an odd prime , and  is the absolute trace function from  onto 

. Define a class of -ary linear codes by 

 

where 

 

We compute the weight enumerators of the punctured codes . 
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I. INTRODUCTION 
Throughout this paper, let  for an 

odd prime  and a positive integer . Denote by 

 a finite field with  elements. An  linear 

code  over  is a -dimensional subspace of  

with minimum distance . Let  denote the 

number of codewords in  with Hamming weight 

. Then the weight enumerator of  is defined by 

. The sequences 

 is called the weight 

distribution of . For more information in coding 

theory, we refer the reader to [20]. 

In modern communication society, linear 

codes have found many applications in 

cryptography, error correction, data storage systems 

and network coding due to their efficient encoding 

and decoding algorithms. However, there are still 

many unsolved problems in coding theory, such as, 

the determination of the weights and forms of 

codewords. They have been an interesting topic of 

study for a long time. The weight distributions of 

linear codes have been studied by evaluating the 

corresponding exponential sums over finite fields, 

see [2, 3, 7, 11, 16, 17, 21, 29, 30, 32-35]. The 

authors in [4, 5] dealt with codes constructed from 

finite geometries. Recently there are also many 

papers considered traces codes over rings and they 

also constructed many interesting codes over finite 

fields, which are distance optimal and minimal 

[22-28]. Note that the motivation of such research is 

that the weight distribution of a code allows the 

computation of the error probability of error 

detection and correction with respect to some 

algorithms. 

In the work [6, 8, 9], the authors introduced a 

generic construction of linear codes. Set 

, where . 

Denote by Tr the absolute trace function from  to 

. A linear code of length  is defined by 

. 

 

The set  is called the defining set of . 

This construction technique is general in the sense 

that many classes of known codes could be 

produced by properly selecting the defining set 

. Many classes of linear codes over finite 

fields were constructed using this method, see [1, 2, 

12-15, 19, 31, 34, 36-38]. Particularly, the authors in 

[13, 31, 38] constructed some linear codes and 

presented their complete weight enumerators, by 

choosing 

, where , , . Ahn and 

Ka [1] investigated the weight enumerators of a 

class of -ary linear codes  defined by 

        (1) 

where 

 

and the defining set is chosen to be 
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. 

In this paper, strongly inspired by [1] and the above 

construction, we define a set  such that  

.         (2) 

We contribute on the weight enumerator of the 

linear codes  of (1). The main results are shown 

in Theorems 1 and 2 in Section 3. For , 

define 

. 

One checks that  and the codes  are 

actually the codes  for . Thus the weight 

enumerators of  are also presented. Moreover, 

compared with the codes  in [1], our codes  

have better parameters if we take the same  and  

(see Remark 1). Besides, the codes presented in this 

paper are minimal in the sense of Yuan and Ding 

[39]. So they are suitable to be applied in secret 

sharing schemes. 

The remainder of this paper is organized as follows. 

In Section 2, we briefly recall some definitions and 

results on exponential sums. In Section 3, we 

present the main results and additionally we give 

some examples. Finally, in Section 4, we make a 

conclusion. 

 

II. PRELIMINARIES 
We begin with the concept of additive characters and Gauss sums over finite fields. Let  be an odd prime and 

 for a positive integer . Let  be the absolute trace function from  to . Then the 

function  defined by 

  for all  

is an additive character of , where  is a -th primitive root of unity. It is clear that  for 

all  and it is called the trivial additive character. The character  is called the canonical additive character 

of . All additive characters  of  can be expressed in terms of , i.e., for all . 

The orthogonal property of additive characters is given by 

 

Suppose that  is the quadratic character of  and  is the quadratic character of  . For all , it is easily 

checked that 

 

Now we define the quadratic Gauss sums over , 

 

According to Theorem 5.15 in [18], we have 

 

and , where . Let  for two positive integers  and 

. The Gaussian periods of order  are defined by 

 

for  where  is the -th cyclotomic class of order  in . 

The following lemmas will be needed when we calculate the weight distributions of our codes in the next section. 
 

Lemma 1 (Propositions 1 and 19, [10]). When , the Gaussian periods are given by 

 

and  . 
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Lemma 2 (Theorem 5.33, [18]). If  is odd and  with , then 

 

 

III. WEIGHT ENUMERATORS OF THE LINEAR CODES CD 
In this section, we present our main results of the weight distribution of the linear codes  defined by (1), where 

the defining set  is given by 

 . 

We should firstly compute the length of . Denote 

. 

It is easily obtained that the length of the linear codes  is . 

To get the weight distribution of , we need to compute the weight of every codeword and count the frequency 

of each weight occurring in all codewords. For a codeword  of , let  be the 

number of components  of  which are equal to 0. Then the weight of  is 

given by . By definition, 

 

                                              (3) 

where 

 

 

 

Now let us determine the values of  and  in the next two lemmas. For simplicity, we denote 

 and  for . 

 

Lemma 3 (Lemma 5, [1]). The values of  are given as follows. 

(1) If m is even, then 

 

(2) If m is odd, then 

 

 

Lemma 4. Denote  if  . The values of  are given as follows. 

(1) When  is even, we have 
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(1.1) if  and , then ; 

(1.2) if  and , then 

 

(1.3) if  and  , then 

 

(1.4) if  and , then 

 

(2) When  is odd, by denoting   for , we have 

(2.1)  if  and , then ; 

(2.2)  if  and , then 

 

(2.3) if  and , then 

 

(2.4) if  and , then 

 

Proof. There are four cases to consider separately:  

Case 1 If  and , then 

 

 

Case 2 If  and , then 
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where we denote . 

Suppose that  is even, then we have  for . So 

 

 

Suppose that  is odd, then we have  for . Hence 

 

 

 

where  and . 

Case 3 If  and , then the results are obtained similarly. 

Case 4 If  and , then 
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where we denote  and . 

Let us divide the rest of the proof into five subcases according to the values of  and . 

Subcase 4.a If , then 

 

 

Subcase 4.b If  and , then 

 

 

When  is even, then  for all . So 

 

 

 

When  is odd, then  for all . So 

 

 

 

where . 

Subcase 4.c If , , we perform a similar calculation and obtain 

 

where . 

Subcase 4.d If  and moreover , then 

 

 

When  is even, 

 

 

 

When  is odd, 
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Subcase 4.e If  and moreover , then  

 

 

     

This leads to the conclusion that 

 

The whole proof of this lemma is completed.  

Lemma 5 (Lemma 3.4[2]). For any , define . 

Then we have 

 

 

Lemma 6 (Lemma 3.5, [2]). For any  , let 

. 

(1) If  is even, then 

 

(2) If  is odd, then 

 

Lemma 7 (Lemma 3.7, [2]). Suppose that  is odd, let 
 

Then we have 

 

Theorem 1. Let  be a linear code defined by (1) where  

. 

Suppose that m is even.  

(1) If  , then the weight distribution of   is given by Table 1 and the code  has parameters 

, where 

 

(2) If , then the weight distribution of  is given by Table 2 and the code  has parameters 

. 
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Table 1.  Weight distribution of  for  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Weight distribution of  for even  

 

 

Proof. Recall that the weight of  in  is given by 

, 

where   and  . We employ Lemmas 3 

and 4 to compute the values of . For convenience, we  denote  if . 

Case 1 Assume  and  . 

If  ，then we obtain  

 

 

 

                     

Weight  Frequency  

0 1 

  

  

  

  

  

  

  

  

  

Weight  Frequency  

0 1 
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Now the frequencies are 

 

 

by Lemma 6, respectively. 

If , then we obtain 

 

 

 

Again from Lemma 6, their frequencies are 

 

 

respectively. 

Case 2 If  and , then we also have the same weights and the same frequencies as those in Case 1. 

Case 3 Now let us assume that  and . There are five subcases to consider. 

Subcase 3.a If , then we obtain 

   

  

 

since . The frequency is  by Lemma 5. 

Subcase 3.b If  and , then we have 

 

   

 

 

 

 

According to Lemma 6, their frequencies are  
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respectively. 

Subcase 3.c If  and , then we have the same weights and the same frequencies as those in 

Subcase 3.b. 

Subcase 3.d If  and  , then we have  

 

   

 

 

 

 

Their frequencies are given below 

 

 

 

respectively. 

Subcase 3.e If  and moreover , then we have 
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Let us compute their frequencies. From Lemma 6 they are given by 

 

 

 

respectively. Thus we get the desired conclusions. 

Example 1. (1) Let . By Theorem 1, the code  is a [115,4, 76] linear code over  . Its weight 

enumerator is 

 

 

which is checked by Magma programs. 

(2) Let  . By Theorem 1, the code  is a [2133, 8,1278] linear code over . Its weight 

enumerator is 

 

        

 

which is checked by Magma programs. 

Theorem 2. Let  be a linear code defined by (1) where 

. 

Suppose that  is odd and . Then the weight distribution of  is given by Table 3 and the code  has 

parameters 

 

where 

 

 

Table 3. Weight distribution of  for odd  

 

Weight  Frequency  

0 1 
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Proof. Recall that . We employ Lemmas 3 and 4 to compute the values of . 

Note that  if . 

Case 1 Suppose that  and . 

If , then we obtain 

 

 

               

From Lemma 5, its frequency is . 

If , then we obtain 

 

 

              

 

where . Their frequencies are computed from Lemma 7 

 

 

respectively. 

Case 2 If  and , then we also have the same weights and the same frequencies as those in Case 1. 

Case 3 Suppose that  and . 

Subcase 3.a If , then we obtain 

 

 

Since . The frequency is . 

  Subcase 3.b If  and , then we have 
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According to Lemmas 6 and 7, their frequencies are 

 

 

 

 

respectively. 

Subcase 3.c If  and  , then we have the same weights and the same frequencies as those in Subcase 

3.b. 

Subcase 3.d If  and , then we have 

 

 

 

If , then . So their frequencies are given from Lemma 6 

 

 

and 

 

respectively. In the case of , we compute similarly by noting that . Their 

frequencies are given below 
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and 

 

respectively. 

Subcase 3.e If  and moreover , then we have 

 

 

 

 

Note that  for odd . Now let us compute the frequency for the case of 

. The other cases will be computed similarly, which are omitted here. If 

, then . By Lemma 6, the frequency is 

 

 

         

 

In the case of , we have . Again from Lemma 6, the frequency is 
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Thus we get the desired conclusions. 

Example 2. (1) Let . By Theorem 2, the code  is a [225, 6,140] linear code over . Its weight 

enumerator is 

 

 

which is checked by Magma programs. 

(2)Let . By Theorem 2, the code  is a [3075, 6, 2433] linear code over . Its weight 

enumerator is 

 

 

 

which is checked by Magma programs. 

Remark 1. We remark that our codes in Theorems 1 and 2 have better parameters than those in [1]. The details are 

shown in Table 4 by comparing the parameters of our codes in Examples 1 and 2 with those in [1]. 

 

Table 4. Comparison of codes 

 (5, 2) (3,4) (3, 3) (5, 3) 

Parameters of our codes [115, 4, 76] [2133, 8, 1278] [225, 6, 140] [3075, 6, 2433] 

Parameters of codes in [1] [116, 4, 72] [2134, 8, 1278] [226, 6, 128] [3076, 6, 2352] 

 

IV. CONCLUDING REMARKS 
In this paper, we employed exponential sums to demonstrate the weight enumerators of linear codes  with 

defining set  of (2). As introduced in [39], any linear code over  can be employed to construct secret sharing 

schemes with interesting access structures provided that 

 

where  and  denote the minimum and maximum nonzero weights in , respectively. By Theorem 1, 

we easily check 

 

where  is even and . Moreover, by Theorems 2, we easily check 

 

 

where  is odd and  . Hence the linear 

codes constructed in this paper are suitable for 

applications in secret sharing schemes with 

interesting access structures.  
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