
Fenil Mehta, et al. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622,Vol. 10, Issue 4, (Series - I) April2020, pp.05-08

www.ijera.com DOI: 10.9790/9622-10040105085|P a g e

Predicting Chess Moves with Multilayer Perceptron and Limited

Lookahead

Fenil Mehta
1
, Hrishikesh Raipure

2
, Shubham Shirsat

3
, Shashank Bhatnagar

4
,

Prof. Bailappa Bhovi
5

1,2,3,4,5
(Department of Computer Engineering, International Institute of Information Technology, Pune, India)

1
(Email id: fenilgmehta@gmail.com)

2
(Email id:hrishikesh.raipure64@gmail.com)

3
(Email id:shubhamshirsat00@gmail.com)

4
(Email id: shashank.bhatnagar27@gmail.com)

5
(Email id: bailappab@isquareit.edu.in)

ABSTRACT

The game of chess has been a testbed for the application of Artificial Intelligence for a long time. It has been a

tough task for an engine of any board game to make an optimal move with limited computational power and

time constraints. However, there are numerous chess engines that have been developed by combined efforts of

the best developers and chess grand masters which were designed by considering various starting books, ending

books, game specific techniques and hard coded algorithms to gain strategic advantage over the opponent. Even

after all these efforts, humans have defeated chess engines time and again with just a few steps lookahead, while

on the other hand the computer is unable to win even after having high computational power and using

expensive lookahead algorithms. In this project, we train a neural network to learn a chess board evaluation

function which can be used to evaluate the board without deep lookahead search algorithms. From the Shannon

number, we can infer that it is not possible to train the model for each possible state. Hence, we need a

computational technique which can approximately predict the score of unseen boards based upon training on

other board states.

Keywords - Artificial Intelligence, Chess Engines, Lookahead, Neural Network, Shannon Number.

--- ---------

Date of Submission: 20-03-2020 Date of Acceptance: 06-04-2020

--- ----------

I. INTRODUCTION
Despite what most people think, highly

rated chess players do not differ from the lower rated

ones in their ability to calculate a lot of moves

ahead. On the contrary, what makes chess

grandmasters so strong is their ability to understand

which kind of board situation they are facing very

quickly. According to these evaluations, they decide

which chess lines to calculate and how many

positions ahead they need to check, before

committing to an actual move [1]. Considering the

size of any board game, we can say that every board

game like Chess, Shogi, Go, Checkers, Tic Tac Toe,

and many more have at least one optimal for each

position which is probabilistic considering the

various game parameters. This probability, also

called the winning probability of any player, is the

deciding factor in choosing the optimal move. As

these games have finite board/game states, we can

conclude that they are computable provided we have

infinite time, space and computational power. It is

the time and space complexity of the algorithm to

find the winning probability of these game states that

define their effectiveness and usefulness in other

domains. Considering this, the human brain has been

able to solve these puzzles to a large extent though

not 100% accurately. A problem mapping strategy

which can mimic the human brain and take

advantage of the computational power of computers

will be a big step towards game strategy solving

algorithms. We have used Multilayer Perceptron

(MLP) to learn the chess board evaluation function

as they have given best results for chess as compared

to other architectures and this helps achieve a

constant time complexity as well as limited space

complexity.

II. PREVIOUS WORK
There has been extensive research in the

field of machine learning to develop an architecture

that suits well to the rules of a particular or multiple

[2] board games, such as Chess, Go, Shogi,

Checkers, Backgammon, etc. All of the research

suggests using various machine learning techniques

RESEARCH ARTICLE OPEN ACCESS

mailto:fenilgmehta@gmail.com
mailto:hrishikesh.raipure64@gmail.com
mailto:shubhamshirsat00@gmail.com
mailto:shashank.bhatnagar27@gmail.com
mailto:bailappab@isquareit.edu.in

Fenil Mehta, et al. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622,Vol. 10, Issue 4, (Series - I) April2020, pp.05-08

www.ijera.com DOI: 10.9790/9622-10040105086|P a g e

like supervised or reinforcement learning depending

on the dataset quality available. For example, the

CrazyAra engine makes use of supervised learning

as only data of lower quality was available [3].

However, implemented using Monte Carlo Tree

Search (MCTS), it achieved an accuracy of 60.4%

[3]. This paper demonstrates using an architecture

that will only need the game states as inputs and

their respective centipawn scores. Thus, the base

will be supervised learning. Prior work however, has

shown that reinforcement learning can overtake

supervised learning given an efficient searching

technique [2]. The AlphaZero engine uses self-play

to improve itself and only requires the games’ rules.

It works on symmetric as well as asymmetric board

games and shows that Alpha-Beta search is not

necessarily superior to MCTS [2]. The Giraffe chess

engine [4] uses the TDLeaf(λ) algorithm. The

drawback of this chess engine is the search speed.

This search speed is low because of the low hit rate

of the cache. In the Giraffe thesis, the

implementation uses a neural network that takes the

positions of chess pieces as inputs and for each

position, a sequence of numbers is given as output

that can work as a signature [4]. The similarity in

positions is the reason for humans’ high search

efficiency. In this, unwanted searching can be

avoided if humans can make out the equally efficient

moves. This will dramatically reduce the average

branching factor of search trees. The Giraffe chess

engine shows all the probabilities for a move by a

particular chess piece. This significantly reduces the

search space. Similar to this, our model also reduces

the search space by computing the centipawn score

for all possible moves from the current board state,

looking only one depth ahead in the search space [4].

The choice of the basic model in the

architecture used in this paper is MLP. As proven

previously, MLPs have a much better performance

as compared to Convolutional Neural Networks, and

this is using both the Algebraic and the Bitmap

notations [1]. Again, the input data representation

can be in the form of Algebraic notation where each

board is represented using a string of the positions of

its pieces, or the representation can be in Bitmap

format, where the entire board is represented as

binary string. Algebraic notation gives more

information about a board than Bitmap, but this is

counter-productive, thus the concise Bitmap format

is chosen here [1].

Board games have been known to have a

very large game-tree complexity, with chess having

one with a lower bound of 10
120,

 as given by the

Shannon number [5]. Even though it has already

been established that MCTS will be a good choice

for tree searching [1], we will not be using any

search algorithm here. This is due to the below

described architecture where the model only

generates the possible board states after one move

and chooses the most optimal one among those.

III. METHODOLOGY
A. Dataset, centipawn score generation and

normalization, and board representation

The proposed model makes use of

supervised learning. Hence, there is a need for

labeled data. For this purpose, we have used a large

dataset containing thousands of games. All games

have been taken from the KingBase dataset [6].

Bitmap notation for representing games makes it

possible to keep track of piece position and helps to

determine whether a piece is present on the board or

not [7]. The data requires preprocessing.

Preprocessing involves parsing and creating board

representations suitable for MLP model [7].

First, each board state is given a centipawn

score generated using the Stockfish 10 engine, which

is one of the strongest existing chess engines. Each

board was evaluated with the following Stockfish

configuration: Hash table size=16MB, Depth=20,

Max evaluation time=1 second, and all centipawn

scores were converted such that they are from the

perspective of white side, i.e. positive centipawn

score means white side is at an advantage and

negative centipawn score means black side is at an

advantage, where each centipawn corresponds to

1/100th of a pawn.

There is no exact range of centipawn score.

However, after evaluating a subset of the training

dataset, we concluded that the centipawn score is

generally between -7000 to 7000 or it is a checkmate

in some ‘n’ steps. Hence we decided to set the

centipawn range as -10000 to 10000 for our

evaluated boards. If the Stockfish engine is not able

to do a checkmate in ‘n’ steps, then it returns a

centipawn score, otherwise it returns the number of

moves in which it can do a checkmate. Hence, this

checkmate move count is converted to centipawn

score using the following formula:

𝑐𝑝 = 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 − 𝑚𝑎𝑡𝑒_𝑠𝑡𝑒𝑝𝑠 ∗ 𝑚𝑖𝑛_𝑑𝑖𝑓 ∗
 𝑠𝑖𝑔𝑛(1)

where,

cp is the Centipawn score,

max_score = 10000,

min_dif (minimum difference) = 50,

sign = +1, if black is getting checkmated,

 -1, if white is getting checkmated,

mate_steps = it’s the absolute value of the

number of steps in which one of the sides

can be checkmated.

After the score generation, the centipawn

score is normalized from [-10000, 10000] to [-1, 1].

After analyzing the centipawn score

distribution and the importance of each centipawn

value in winning and losing of the game, we have

normalized the scores in the following manner:

Fenil Mehta, et al. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622,Vol. 10, Issue 4, (Series - I) April2020, pp.05-08

www.ijera.com DOI: 10.9790/9622-10040105087|P a g e

Table 1: Normalized Centipawn scores

Input range Output range

[-10000, -2000] [-1.0, -0.95]

[-2000, -50] [-0.95, -0.3]

[-50, 50] [-0.3, 0.3]

[50, 2000] [0.3, 0.95]

[2000, 10000] [0.95, 1.0]

 Secondly, the input data is converted into a

concise numerical representation i.e. the Bitmap

format. Here, we have used 778 bits to represent

each board state. The DeepChess engine also used a

similar form of 773 bits representation for the input

[8]. In Bitmap representation, each of the 64 squares

of the chess board are given 12 features (for the 12

types of pieces), and the rest are additional bits

added to get more information about advanced chess

moves [1]. Each bit can either mark the presence or

absence of a piece on that square, or of a situation

being present (such as the En-passant move).

Table 2: Calculation for bits in 778 bits Bitmap representation

Feature Bits Type Comment

P1 piece 6*64 bool order: {KING, QUEEN, BISHOP, KNIGHT, ROOK, PAWN}

P2 piece 6*64 bool order: {KING, QUEEN, BISHOP, KNIGHT, ROOK, PAWN}

Turn 1 bool Which player to play next, 1=> White, 0=>Black

Checkmate 1 bool Indicate whether it is a checkmate

King side castling 2 bool One bit for each player, 1=> allowed

Queen side castling 2 bool One bit for each player, 1=> allowed

Check 2 bool Whether it is a check or not, 1 bit for each player

Queen 2 bool Whether queen is alive or not, 1 bit for each player queen

Total bits 778

B. Multilayer Perceptron Architecture

This subsection gives the details of the

MLP architecture that has been used to achieve the

results presented in the next section. Mean Squared

Error (MSE) loss function is used for the regression,

and considering the large number of board positions

of the chess board, we decided to use six hidden

layers where the first two hidden layers have 2048

neurons and the later four layers have 1024 neurons

each. In order to prevent overfitting, a Dropout value

of 10% is used for each hidden layer. Each layer is

connected with a nonlinear activation function: the

six hidden layers use Rectified Linear Unit (ReLU)

activation function, while the final output layer uses

hyperbolic tangent as the activation function. Adam

optimizer is used for the stochastic optimization

problem with its parameters initialized to: learning

rate(η)=0.001, β1=0.9 and β2=0.999. The network

has been trained with Mini-batches of 16384

samples.

IV. RESULTS
This section presents the results that have

been obtained in the MLP architecture discussed

previously. All the training data is from white’s

perspective hence the model tends to play better as

white (1
st

player) as compared to black (2
nd

 player).

After training the model for 128 epochs, the

resultant MSE was 0.0264.

Following is the game played by the model with

itself:

['e2e4', 'd7d5', 'e4d5', 'e7e5', 'b1c3', 'f8a3', 'f1b5',

'c7c6', 'b5c6', 'b8c6', 'd5c6', 'd8d2', 'c1d2', 'a3b2',

'c6b7', 'g8f6', 'b7a8r', 'b2a1', 'a8a7', 'c8h3', 'a7f7',

'h3g2', 'f7g7', 'g2c6', 'g7g3', 'h8g8', 'g3g8', 'e8d7',

'd1a1', 'c6h1', 'a1d1', 'f6g8', 'a2a4', 'g8f6', 'f2f4',

'd7c6', 'd1g4', 'e5f4', 'g4g8', 'f6g8', 'd2f4', 'h1f3',

'g1f3', 'c6b7', 'f3e5', 'g8e7', 'e1f1', 'e7c8', 'a4a5',

'c8b6', 'a5b6', 'b7b6', 'f4g3', 'b6a6', 'f1g2', 'a6b7',

'g2f1', 'b7b8', 'f1g2', 'h7h6', 'c3a4', 'b8b7', 'h2h3',

'b7b8', 'c2c4', 'b8b7', 'g2f2', 'h6h5', 'f2g2', 'h5h4',

'g3h4', 'b7c7', 'h4g3', 'c7d8', 'g2h1', 'd8c8', 'c4c5',

Fenil Mehta, et al. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622,Vol. 10, Issue 4, (Series - I) April2020, pp.05-08

www.ijera.com DOI: 10.9790/9622-10040105088|P a g e

'c8c7', 'c5c6', 'c7d6', 'h1g2', 'd6c7', 'h3h4', 'c7d6',

'h4h5', 'd6e7', 'g3f2', 'e7f6', 'f2b6', 'f6e5', 'b6c7',

'e5f6', 'g2h3', 'f6g5', 'c7e5', 'g5f5', 'e5h8', 'f5e4',

'h5h6', 'e4e3', 'c6c7', 'e3e2', 'c7c8n', 'e2f3', 'h8g7',

'f3e2', 'g7h8', 'e2f3', 'h8g7', 'f3e2'].

 Following is the game played by the model with

stockfish 10 configuration (Hash size=16MB,

Threads=1, analyse time=0.01 seconds):

['e2e4', 'd7d5', 'e4d5', 'd8d5', 'g1f3', 'g8f6', 'd2d4',

'd5e4', 'f1e2', 'c8f5', 'e1g1', 'e4c2', 'b1c3', 'c2d1',

'g2g4', 'd1c2', 'c3d5', 'f5g4', 'd5f6', 'g7f6', 'a2a4',

'c2e2', 'c1e3', 'g4f3', 'f1b1', 'h8g8', 'e3g5', 'g8g5']

When the game starts, the model is able to

play just decently. However, considering the

sparseness when chess boards are converted to

binary form and the humongous possibilities of the

different board positions for input to the MLP,

exploratory search is necessary as the game

proceeds.

In order to evaluate the performance of the

MLP, we used the model to predict the chess moves

on the Kaufman special dataset of 25 complicated

board positions, and the model was unable to predict

the expected move for any of the board positions.

V. CONCLUSION AND FUTURE WORK
In this work, we discussed a chess engine,

which avoids the use of state space search to find the

next optimal move. It only relies on the trained

network to select the most favourable move after

being trained on millions of games played between

players. This work tries to show that for board

games like chess, there should be an optimal move

for each board state. However, we cannot say that

there is no need to perform exploratory search for

every request to the model or the engine to play or

predict an optimal move.

The system is developed by using only the

Portable Game Notation files for the chess game and

its board states evaluated scores generated using

Stockfish 10. Thus, the model can be ported to other

board games as well, requiring only their PGN files

and an evaluation method.

As the system is partially aware of good

moves and bad moves. Hence, using MCTS and self-

play can help enhance and fine tune the board

evaluations. The system can also be extended to

learn from games played against human players, or

against any other game engines.

REFERENCES
[1] M. Sabatelli, F. Bidoia, V. Codreanu, and M.

Wiering, Learning to Evaluate Chess

Positions with Deep Neural Networks and

Limited Lookahead, Proc. 7th International

Conf. on Pattern Recognition Applications

and Methods, Funchal, Madeira-Portugal,

2018.

[2] D. Silver, T. Hubert, J. Schrittwieser, I.

Antonoglou, M. Lai, A. Guez, M. Lanctot, L.

Sifre, D. Kumaran, T. Graepel, T. Lillicrap,

K. Simonyan, and D. Hassabis, A general

reinforcement learning algorithm that masters

chess, shogi, and Go through self-play,

Science, vol. 362, no. 6419, 2018, 1140–1144.
[3] J. Czech, M. Willig, A. Beyer, K. Kersting,

and J. Fürnkranz, (Aug. 2019). Learning to

Play the Chess Variant CrazyHouse Above

World Champion Level with Deep Neural

Networks and Human Data. [Online].

Available: https://arxiv.org/abs/1908.06660
[4] M. Lai, Giraffe: Using Deep Reinforcement

Learning to Play Chess, M.Sc. thesis,

Imperial College London, London, 2015.
[5] C. Shannon, Programming a Computer for

Playing Chess, Philosophical Magazine, vol.

41, no. 314, 1950.

[6] KingBase2019 database, KingBase2019, Oct.

2019. [Online]. Available:

https://www.kingbase-chess.net/

[7] M. Sabatelli, Learning to Play Chess with

Minimal Lookahead and Deep Value Neural

Networks, M.Sc. thesis, University of

Groningen, Amsterdam, 2017.
[8] O. E. David, N. S. Netanyahu, and L. Wolf,

DeepChess: End-to-End Deep Neural

Network for Automatic Learning in Chess,

Artificial Neural Networks and Machine

Learning – ICANN 2016, in Lecture Notes in

Computer Science, (Barcelona: Springer

Science+Business Media, 2016) 88–96.

