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ABSTRACT 
This article presents a novel empirical study for the estimation of the State-of-Charge (SOC) of the Panasonic 

18650PF lithium-ion (Li-ion) cell using deep learning models and algorithms with adaptive learning rates. 

Specifically, we model a vehicle drive cycle designed for training neural networks. Our results suggest that the 

choice of the optimization algorithm affects the performance of the model and that a Deep Forward Network 

(DFN) with four hidden layers is the model of optimal capacity when considering 256 units per layer. This 

optimal DFN is able to estimate the SOC of the 18650PF Li-ion cell with an error smaller than 0.12 % over a 
25o C dataset using the Adam optimization algorithm. 
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I. INTRODUCTION 
In the last decade, government, industry 

and academia have given great importance to the 

electrification of the transport system, motivated by 
the need to reduce the emission of greenhouse gases. 

Hybrid electric vehicles, such as the Toyota Prius, or 

fully electric vehicles, such as the various Tesla 

models, the Nissan Leaf and the Chevy Bolt, are 

successful cases in the USA. The United Kingdom 

took a bold step in this direction in 2018 [1], [2].  

The advancement of Electrical Energy 

Storage (EES) technologies enabled the emergence 

of the iPod, smartphones and tablets with lithium-ion 

(li-ion) batteries. Also, EES will be one of the 

critical components of the new electricity grid, given 
the intermittent nature of renewable energy sources 

[3]. EES systems are necessary even when 

renewable sources are connected to the grid, because 

it is necessary to smooth the energy supply. For 

example, the EES of a building or factory can be 

charged during hours of reduced demand and 

supply/supplement energy demand during peak 

hours. 

EES technology consists of the process of 

converting a form of energy (almost always 

electrical) to a form of storable energy, which can be 

converted into electrical energy when necessary.  
EES has the following functions: to assist 

in meeting the maximum electrical load demands, to 

provide time-varying energy management, to relieve 

the intermittency of renewable energy generation, to 

improve energy quality/reliability, to serve remote 

loads and vehicles, to support the realization of 

smart grids, improve the management of 

distributed/standby power generation and reduce the 

import of electricity during peak demand periods [4]. 

The efficient use of the Li-ion battery 
requires the supervision of a Battery Management 

System (BMS), as it is necessary that the battery 

operates under appropriate conditions of temperature 

and State-of-Charge (SOC). The BMS has to 

estimate, in real-time, the amount of energy stored in 

a given system, such as a battery pack of a Electric 

Vehicle (EV). Such a task is not trivial, since it is 

not possible to directly measure the amount of 

energy stored in the system. In fact, the estimation of 

SOC is probably one of the biggest challenges in the 

field of battery research [5]. 

For instance, SOC can be measured using 
the Coulomb counting method given by (1)1 

SOC = SOC0 – ∫ Ibat dt/Qn  (1) 

 

where SOC0 is the initial value of SOC, Ibat is the 

battery current and Qn is the nominal capacity in Ah. 

It should be noted that the cell temperature produces 

deleterious effects on the open circuit voltage, 

internal resistance and available capacity and can 

                                                             
1 The lower and upper limits of the integral in (1) are 0 and t, 

respectively, where t denotes time. 
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also lead to a rapid degradation of the battery if it 

operates above a given temperature threshold. 

Therefore, the modeling of the battery is of 

paramount importance, since it will be used by the 

BMS to manage the operation of the battery [6]. 

The recent literature suggests that the 

machine learning approach, based on deep learning 

algorithms is the state of the art in the area of SOC 
estimation  [7], [8].  

One of the great challenges in deep learning 

is the optimization of the neural network. Although 

the Stochastic Gradient Descent (SGD) algorithm 

(and its variants) is very popular, a learning rate too 

small leads to painfully slow convergence, while a 

learning rate too high can destabilize the algorithm, 

causing oscillations or divergence [9].  

On the other hand, we have at our disposal 

algorithms with adaptive learning rates such as 

AdaGrad, RMSProp, and Adam2.  
This work uses Deep Forward Networks 

(DFN) or MultiLayer Perceptrons (MLP) as baseline 

models. We investigate the effect of choosing the 

optimization algorithm on the performance of the 

deep learning models, especially with regard to the 

SOC estimate of a lithium-ion cell. The questions we 

ask are: a) which optimization algorithm should we 

choose? b) Which DFN offers the optimal capacity3? 

We model a vehicle drive cycle designed 

for training neural networks which were applied to a 

Panasonic 18650PF Li-ion cell [10]. More 

specifically, we compare the performance of the 
following optimization algorithms for training deep 

models: SGD, AdaGrad, RMSProp, and Adam 

(these last three use methods that adapt the learning 

rate parameter of the training algorithm).  

The issue of regularization (parameter norm 

penalties, early stopping, dropout, etc.) is outside the 

scope of this paper.  

The remainder of the work is organized as 

follows.  Section II presents the state of the art and 

trends in Li-ion battery SOC estimation. Section III 

presents our experimental results. Finally, section IV 
presents our conclusions. 

 

II. STATE OF THE ART AND 

TRENDS IN LI-ION BATTERY 

ESTIMATION 
Energy storage acts as a mediator between variable 

loads and variable sources.  

                                                             
2
 Chapter 8 of reference [9] presents a brief, but very instructive, 

review of such algorithms. 

3 In deep learning, the number of learnable parameters in a model 

is often referred to as the model’s capacity (determined by the 

number of layers and the number of units per layer) [9]. 

Hannan et al. [11] present a detailed 

taxonomy of the types of energy storage systems 

taking into account the form of energy storage and 

construction materials: mechanical, electrochemical 

(rechargeable and flow batteries), chemical, 

electrical (ultracapacitor or superconducting 

magnetic coil), thermal and hybrid. Li-ion battery 

technology has attracted the attention of industry and 
academia for the past decade. This is mainly due to 

the fact that Li-ion batteries offer more energy, 

higher power density, higher efficiency and lower 

self-discharge rate than other battery technologies 

such as NiCd, NiMH, etc. 

There are two methods of battery modeling: 

i) model-driven and ii) data-driven (based on data 

that is collected from the device) [12]. 

Electrothermal models, which belong to the 

category of model-driven methods, are commonly 

classified as: i) electrochemical or ii) based on 
Equivalent Circuit Models (ECM). 

Electrochemical models are based on 

partial differential equations and are able to 

represent thermal effects more accurately than ECM. 

However, the first class of models requires detailed 

knowledge of proprietary parameters of the battery 

manufacturer: cell area, electrode porosity, material 

density, electrolyte characteristics, thermal 

conductivity, etc. This difficulty can be eliminated 

by characterizing the battery using a thermal camera 

and thermocouples. But this solution is expensive, 

time consuming and introduces other challenges 
such as the implementation of dry air purge systems, 

ventilation, security, air and water supply, etc. 

Electrochemical models demand the use of intensive 

computing systems. 

On the other hand, the ECM-based 

approach has been used for computational/numerical 

analysis of batteries. In this case, the objective is to 

develop an electrical model that represents the 

electrochemical phenomenon existing in the cell. 

The level of complexity of the model is the result of 

a compromise between precision and computational 
effort. Note that an extremely complex and accurate 

ECM may be unsuitable for application in embedded 

systems. 

Estimating the SOC of lithium ion cells in a 

BMS by means of deep learning offers at least two 

significant advantages over model driven 

approaches, namely: i) neural networks are able to 

estimate the non linear functional dependence that 

exists between voltage, current and temperature 

(observable quantities) and unobservable quantities, 

such as SOC, with great precision and ii) the 

problem of identifying ECM parameters is avoided 
[7]. 
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III. EXPERIMENTAL RESULTS 
We selected the Panasonic 18650PF Li-ion 

Battery Data of [10]. This dataset contains a series of 

ten drive cycles: Cycle 1, Cycle 2, Cycle 3, Cycle 4, 

US06, HWFTa, HWFTb, UDDS, LA92, and Neural 

Network (NN). Cycles 1-4 consist of a random mix 
of US06, HWFET, UDDS, LA92, and Neural 

Network drive cycles. The drive cycle power profile 

is calculated from measurement for an electric Ford 

F150 truck with a 35kWh battery pack scaled for a 

single 18650PF cell.  

We consider only the tests at the 

temperature of 25o C for the NN drive cycle, which 

combines portions of US06 and LA92 drive cycles, 

and was designed to have some additional dynamics 

which are useful for training neural networks. Note 

that the objective of this paper is not to assess the 
performance of the DFN models at different 

temperatures, but to empirically investigate the 

question of stochastic optimization in the context of 

the problem of SOC estimation with deep neural 

nets. 

For instance, Fig. 1 shows the following 2.9 Ah 

Panasonic 18650PF Li-ion cell characteristic curves: 

 temperature (o C) vs. SOC (%); 

 amp-hours discharged vs. time (minutes); 

 voltage (V) vs. time (minutes); 

 current (A) vs. time (minutes); 

 temperature (o C) vs. time (minutes), and; 

 voltage (V) vs. SOC (%). 

We applied feature normalization on the input data 

using the formula 

xnormalized = (x – µx)/x  (2) 

where µx and x denote the mean and standard 
deviation of x. 

We divided the NN dataset into training 

and validations sets. The validation error is 

estimated by taking the average validation error 

across K = 4 trials. We use a simple, but popular 

solution, called K-fold cross-validaton, which 

consists of splitting the available training data into 

two partitions (training and validation), instantiating 

K identical models, for each fold k  {1; 2; …, K}, 
and training each one on the training partitions, 
while evaluating on the validation partition. The 

validation score for the model used is then the 

average of the K validation scores obtained. It is 

usual to use about 80% of the data for the training 

set, and 20% for the validation set. Note that the 

validation scores may have a high variance with 

regard to the validation split. Therefore, K-fold 

cross-validaton help us improve the reliability when 

evaluating the generalization power of the model [9]. 

We use Mean Absolute Error (MAE) and 

Mean Squared Error (MSE) as performance metrics 

for the generalization (test) errors. After the 
validation phase using K-fold cross-validaton, the 

DFN model is trained using the entire training data 

and its performance is evaluated against an unseen 

test set. This the test phase (final phase). 

The features of the input layer are: voltage, 

current, and temperature. We vary the depth of the 

models, using DFN with two to five hidden layers, 

in order to assess the effect of depth on 

generalization power, each hidden layer having 256 

units. We used the REctified Linear Unit (Relu) 

activation function, given by 
 

g(z) = max(0, z)   (3) 

 

 

Figure 1: in (a), (b), (c), (d), (e), and (f) we have: temperature (o C) vs. SOC (%), amp-hours discharged vs. 

time (minutes), voltage (V) vs. time (minutes), current (A) vs. time (minutes), temperature (o C) vs. time 

(minutes), and voltage (V) vs. SOC (%), respectively. 
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Tables 1 and 2 show the MAE and MSE, 

respectively, for the SOC estimates obtained with 

SGD, AdaGrad, RMSProp, and Adam optimizers. 

Fig. 2 shows the learning curves (MAE and loss 

function) of the training phase for the DFN with four 

hidden layers using the Adam algorithm. 

 

The results of Tables 1 and 2 show that: 

 the choice of the optimization algorithm 

must be made on a case-by-case basis. Although the 
family of algorithms with adaptive learning rates 

(AdaGrad, RMSProp, and Adam in this paper) has 

become very popular in the deep learning 

community nowadays, one can not claim, a priori, 

that a given optimization algorithm is the best 

algorithm. For instance, the results obtained for the 

DFN with four hidden layers and the SGD algorihtm 

are better than those obtained for AdaGrad and 

RMSProp; 

 the choice of the optimization algorithm 
affects the model performance; 
 the DFN with four hidden layers is able to 

estimate the SOC with a MAE of 0.21% and MSE of 
0.11% (best results) using Adam, being, therefore, 

the model of  

 

optimal capacity when considering 256 units per 

layer. 

 

It should be noted that we do not perform ensemble-

average, as we are dealing with a real dataset, i. e., 

we just have access to one realization of the data-

generating process.  

 

IV. CONCLUSION 
We present a preliminary empirical study 

on the impact of the optimization algorithm on the 

performance of the deep learning model, in the 

context of the estimation of the SOC of a Li-ion 

battery. For this, we used the Panasonic 18650PF Li-

ion Battery Data [10]. 

Our results indicate (for the 18650PF Li-ion 

cell) that: i) the choice of the optimization algorithm 
must be made on a case-by-case basis, ii) the choice 

of the optimization algorithm affects the model 

performance, iii) the DFN with four hidden layers 

(256 units per layer) is able to estimate the SOC with 

with a MAE of 0.21% and MSE of 0.11% using the 

Adam optimizer, being, therefore, the model of 

optimal capacity. 

 

 

Table 1: MAE vs. optimization algorithms. 

Optimizer 

MAE (%) 

2 hidden  

layers 

MAE (%) 

3 hidden  

layers 

MAE (%) 

4 hidden  

layers 

MAE (%) 

5 hidden  

layers 

SGD 0.32 0.45 0.32 0.50 

AdaGrad 0.84 0.63 0.53 0.49 

RMSProp 0.41 0.67 0.56 0.32 

Adam 0.46 0.26 0.21 0.22 

 

Table 2: MSE vs. optimization algorithms. 

Optimizer 

MSE (%) 

2 hidden  

layers 

MSE (%) 

3 hidden  

layers 

MSE (%) 

4 hidden  

layers 

MSE (%) 

5 hidden  

layers 

SGD 0.25 0.42 0.25 0.51 

AdaGrad 1.49 0.85 0.60 0.52 

RMSProp 0.37 0.75 0.56 0.29 

Adam 0.41 0.14 0.11 0.13 
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Figure 2. Learning curves of the training phase. 
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