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ABSTRACT 
Our analysis is based on the interaction of small particles and fluid, under the fractional vision of Navier-Stokes 

equations. A proposal for a relationship between Feigenbaum constant and spatial occupation index, through the 

link with the diameter exponent of the particle considered is obtained. Power of particle size decreases from the 

value 2 for the linear viscous layer, move through inertial range, until reaching the inverse of Feigenbaum 

constant, in the developed turbulence regime. An arboreal fractal structure for laminar sublayer and inertial range 

is also proposed. Subsequently, a generalized Rubey model and a discrepancy number to evaluate models with 

respect to Stokes are formulated. 
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I. INTRODUCTION 

Inverse problems are a very valuable 

technical tool to discover the rich wealth that is often 

hidden in the depths, below from the feet of a nation. 

But on the other hand, as in this paper, also allow us 

to solve problems about theoretical foundations that 

lead to formulate the body force that in a couple of 

action and reaction, a fluid exerts on a particle. 

We want to see how analysis and results are 

modified when spherical droplets experiment 

deformations that lead us to consider a variety of 

forms as diverse as snow or ice particles. In our 

previous description of droplets in clouds we 

imagine them spherical as a result of surface 

efficiency for a given volume; and also we saw 

drops in the rain with the same spherical shape. The 

new context places us in a similar situation to the 

case of sediments, already considered by us in paper 

[1]. 

As we also announce in paper [1], analysis 

context will be that of particles in interaction with a 

fluid, under the Navier-Stokes equations fractional 

vision, but we enunciate it from an abstract general 

simplicity foundation, for later direct us towards the 

complexity of the most concrete; thus we come to a 

more general relationship between free velocity and 

size than that formulated by Stokes; a link between 

spatial occupation index and Feigenbaum constant; 

and also, an arboreal fractal structure for laminar 

sublayer and inertial range for the case of a flat and 

extensive boundary surface for the fluid. 

Two variables of fluid field are velocity and 

pressure, as primitive variables. Movement action on 

field variables is represented by a linear differential 

operator, which contains the physical parameter of 

fluid viscosity and the spatial differential operators 

of divergence and gradient. In its fractional version, 

explicit reference is doing to fluid movement scales, 

while in the version called by us “classical” there is 

no reference to these movement scales. In addition, 

boundary conditions are associated with an operator 

that nullifies field variables on said contour. Then, 

we transform the description into its “variational” 

and “weak Q” modes with two bilinear forms, each 

one associated with one of the field variables. Now, 

Galerkin method can be applied to obtain the 

solution in a recurrently way. 

An alternative form arises when 

considering a particle embedded in the fluid in 

motion, analogous to an irrigation channel. 

Equations that link velocity evolution and water 

level are Saint-Venant equations, in which the force 

that particle exerts on fluid must be added, as a 

couple action and reaction, which is a body force; 

and that in its dimensionless form resembles a 

friction slope. The above refers to the result that 

states: Lie derivative on hydraulic slope is 

proportional to the hydraulic slope itself; with which 

hydraulic slope is determined as a quotient between 

a velocity power, free, and another power of 

hydraulic radius, which for the case is proportional 

to the diameter, [2]. Then we take care of the 

different modes. 

 

II. MODES 
2.1 Abstract 

Problem of fluid and a particle interaction 

can be formulated in a general abstract way as a 
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linear differential operator and a boundary operator. 

For this the unknown quantity is presented in the 

columnu =  u
 

p
 of velocity and pressure, as 

primitive variables, and external force too, as a 

columnf =  f
 

0
 , differential operators are grouped 

into the matrix, ,1,
0























 


div
L

with  
2

,, 


 as spatial occupation index,the 

α- kinematic viscosity, [3], and the boundary 

operator asB =  
I 0
0 0

 ; so interaction problem is 

stated as in (1), where the asterisk denotes the 

possible subset of the boundary, [4], 

Lβu = f, in ; Bu = 0, on δ∗(1) 

 

2.2 Variational  

Remember that we are dealing with a 

velocities space, with two indexes: first, the order of 

its differentiability and the second, the integrability 

order. Whenever the second is 2 it is a Hilbert space. 

Besides, if the first is 1 and the velocity has its 

domain located within a compact, velocity can be 

measured by the diagonal of the parallelepiped of its 

three partial derivatives along coordinate axes and 

we are inside of the denoted space    3,
1

0
 nH

n

. 

Set of zero divergence distributions is considered 

  0:  divvDvV , with domain in   and 

being its closurethe Hilbert space   
n

HV 
1

0
. 

External force is presumed of type   
n

Lf 
2 , 

being  
2

L  the energy space of velocities that have 

integrable kinetic energies. Distributions are 

evaluated in any   
n

Dv  , 

       vuavfvuvp ,,,,/
0

1


 


 and as,

0divv  

      Vvvuavfvu  ,,,,
0




 (2) 

Following space is defined 

   0:
1

0
 divvHVvV

n

div
, which is a 

closed subspace of V , but because of Poincaré 

inequality, [4],it is also a Hilbert space with the 

norm: 
0

vv  It follows that bilinear form is 

coercive in 
divdiv

VV  , 

     

Vvw

vuvwavwa





,

,,,,
0






(3) 

but also  vfv , is linear and continuous 

on 
div

V , therefore the following problem admits a 

unique solution, according to Lax-Milgram lemma, 

[4]: 

 

   
divdiv

VvvfvuaVu  ,,,: (4) 

Within Galerkin method: let 0h  be the 

mesh size or step, where  
hdiv

V
,

 denotes a family of 

dimensional finite subspaces of 
div

V  that satisfies the 

hypothesis of consistency: 

∀v ∈ Vdiv : 
inf

vh ∈ Vdiv ,h
 v − vh  0, if h  0 

 

His Galerkin approximation raises: find 

hdivh
Vu

,
  such that 

 

   
hdivhhhh

Vvvfvua
,

,,,  (5) 

An application of the Lax-Milgram lemma, 

[4], to 
div

V  and subspaces 
hdiv

V
,

, produces the 

existence and uniqueness of the solution of the 

problem (5). Solution is stable and converges to 

Stokes problem solution (5). That is, there is a 

constant C , which does not depend on h , such that 

 

h
Vv

h
vuCuu

hdivh




,

inf (6) 

 

2.3 Weak Q 

It is distinguished from variational form 

because pressures Hilbert space is considered, as 

   0:
2

0
 

qqLQ  which correspond to 

/pq  and the bilinear form: 

 

      
n

HVvQqdivvqqvb 
1

0
,,,, (7) 

 

So, two bilinear forms are available. 

 

It can be show that the problem: Find 

QpVu  ,  

 

     

  Qqqub

Vvvfpvbvua





,0,

,,,,
(8) 

 

has unique solution, (although pressure is 

determined up to an additive constant). 

In the Galerkin method two subspaces 

families are introduced: Vh  of V and Qh  of Q. The 

goal is approximated with discrete problem: 

finduh in Vhand ph in Qh , 

 

     

 
hhhh

hhhhhhh

Qqqub

Vvvfpvbvua





,0,

,,,,
 

 

2.4 Classic 

We consider a dynamic quartet formed by: 

particle weight, Archimedes floating force, 

hydrodynamic pressure force and viscous friction. 
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For weight and Archimedes flotation forceswe 

have the effective weight force: 

 gVF
f

f

f

e


















 
 , with  

f
 ,  the particle 

and fluid density, and Vthe volume in its relation 

with sphere area: 
 

g
Ag

F
fe 















2/1

3/2

6




, pair of 

forces contributes with the effective weight, with 

 g,  cinematic viscosity and gravity. If the other 

pair, of hydrodynamic pressure force and viscous 

friction that we will call drag, produce: 

UdCF
fD
 , with  dU ,  the free velocity of the 

fluid and the particle diameter; so the balance is 

reached under the condition: 

  2
2/3

2

2/1
/

6

1
, ddA

C
Bdg

Bd

U


  so that 

2

18

1
,3 dBdC


   and equilibrium condition 

results
U

Bd
= g∆. Instead of the stock triplet, 

rrrrfr
lvvlv /,/,/

2

0
  shear velocity, 

the fundamental length and the reference 

acceleration [5], we give it a dimensionless 

representation with d
g

dUd

3/1

2*
,/ 







 



 the 

particle Reynolds number and its dimensionless 

diameter [6]. Equilibrium condition:  
Ud


 =

1

18
d∗

3. 

We call  
*

dF  the form factor and for Stokes model 

it's: 

   
18

1
,/

**

3

*
 dFdFdUd  (9) 

Hydrodynamic pressure force is found: 

UdF
fp
 , Stokes approximation expresses the 

balance between viscous force and hydrodynamic 

pressure gradient: 

0, 







 i

iii
u

x
up

x




 (10) 

In the laminar limit 1 it is obtained: 

0,
2

2









 i

iii
u

x
up

x
 (11) 

With divergence acting on momentum 

equation and mass conservation results a Poisson 

equation for the pressure 

0
2

2






p

x
i

(12) 

Due small particle symmetry, spherical 

coordinates are used and accompanies Green 

function method. A solution in the serial form is 

sought: 
rz

Appp
n

n

nn

n

n

1
,

0 


 





with

cosrz  . Due to boundary conditions on the 

sphere of radius 2/d  and at distances sufficiently 

far away from it, series is reduced to a monomial 

because the following term remains only n=1:

UdA
rz

Ap
f


4

3
,

1

111





  and it results 

21

cos

4

3

r
Udp

f


 . By integrating 

hydrodynamic pressure on the sphere, it provides the 

force:  UdF
fp
 , [7]. In addition viscous 

friction force is:  UdF
ff
2  what can be seen 

by the well-known Stokes formula or by solving 

differential equations. 

 

Internal viscous friction is responsible for 

variations in deformation. If 

   UdFgdF
fffe
 










3

6

1  and with 

2

18

1
d

g
U




  it is obtained the viscous internal 

friction force:  UdF
ff
2 ; in this case, it is 

observed that viscous force is twice pressure force. 

So total drag force or drag, hydrodynamic pressure 

plus internal friction, is: 

 UdFFF
ffpD
3 . 

From the point of view of the drag coefficient or 

drag: 

22

0

8
sf

D

D

dU

F
C




 , with 

ddUU
s
 ,

0
 as free velocity and particle 

size, in positions 2/dr  . It is convenient to 

decompose into two: 



 /

16

8

22 Ud
dU

F
C

f

f

f
  

and 



 /

8

8

22 Ud
dU

F
C

f

p

p
 , and the sum is 

/,
24

UdR
R

C
ep

ep

D
 . However, when 

Reynolds number grows, deformation variations 

expressed by friction weaken as long as 

hydrodynamic pressure remains, until the first 

becomes a constant and that of pressure approaches 

the value 

ep

f

R

A
C  , so B

R

A
C

ep

D
 . This 
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description is compatible with the Ossen force: 

  2/,
16

3
3

22
drRRF epepfD









   the 

radial coordinate, [4], [14]. In effect, 

2/,
2

924

8

22

dr
R

R

F
C

ep

epf

D

D





, which is 

of the type: B
R

A
C

ep

D
 . But also, in 

equilibrium, the pair of effective weight is balanced 

with the pair of drag, thus 
 2

3

*

epep R

d
CB

R

A
 , 

then  
*

2/3

*
dFdR

ep
 ,

 

2

2/3

*

2

2/3

*

*

22






























Bd

A

B

C

Bd

A
dF

where C  is a number linked to the volume that 

depends on the particle shape.Moreover, the so-

called "drag crisis" is included in Bvalue, 

considering it constant until before the critical 

Reynolds number for which it occurs, when it 

descends from B to B1, withB1 ≈ 0.6B, for smooth 

surface; however for rough surface, B1grows 

approximately linearly with Rep so that the value of 

Rep remains determined by the model implicitly, [8]. 

 

III. GENERALIZATION 
There are several aspects that we must put 

in perspective. Formulas cited in paper [9] are of 

experimental origin and show that particles size is 

manifested through a variety of diameter exponents, 

exponents that assume different values and lower 

than the value 2 of Stokes formula; and that some 

can even be seen as interpolations of two of these 

different exponents. In Stokes formula, of theoretical 

origin, participation of particles size can be seen as a 

fractional exponent of the area of its boundary, so it 

is possible to imagine a fractal process of Cantor 

type, which progressively modifies the area of the 

boundary and produce new exponents. 

Previous results [9], we had written them 

as:     g
Bd

U
dgUrdC

b

cb
,2/

1



;we 

imagine it as aB operator that transforms diameter 

power and producesBd; but then we seeit as a 

fractional derivative and we ended up being 

dimensionless with the addition of the particle 

Reynolds numberand its dimensionless diameter 

d
g

dUd

3/1

2*
,/ 







 



 ; in the form:Bd =

CDd∗

s  d∗ 
3. We already formulated Stokes model as: 

   
18

1
,/

**

3

*
 dFdFdUd  . Now generalizing, 

we formulate a model like 

 
 

*3

*
*

/
dF

dCD

Ud

b

s

d
















  , 

with the form factor  
*

dF  to be specified. In 

addition, we see the original factor (  rd 2/  as 

dependent on the dimensionless diameter 
*

d and 

inversely proportional to the form factor: 

   
*1

/12/ dFrdC 


. 

 

First, in the vision of the operator that 

transforms diameter power and produces 
c

dBd   

we had imagined c as an interpolation between 2/1  

and 2, as conceived by Rubey [10], but for us 

depending on the parameterized flow regime by  , 

soc =  1 − β 
1

2
+ β2, what produces the following 

scenarios:β  1, c  2 if it’slaminate, andβ  
0, c  1/2if it’s turbulent. 

But then, when considering sediments case, 

we know that velocities formulas are also proposed 

that arise from doing an interpolation between two 

diameter powers such as the formula of Scotti-

Foglieni, [11], [9]. So, we return to that idea and 

generalize it by representing the exponent of the 

diameter as an interpolation between the laminar 

exponent and another that we seek to specify, but 

using the spatial occupation index so we intend to 

link two exponents: one relative to laminar 

movement with another relative to turbulent 

movement; so we set out to go a step further and 

interpolate:c =  1 − β 
1

σ
+ β2, but the value 1/

σremains to be specified later. 

For this and within the second aspect, the 

fractal, we consider the Cantor process described by 

the Feigenbaum tree. For what we propose: 

Feigenbaum relation 
5

11
,

1
1

1



















m

L

mL , 

if we assume 1,0
1
 

L
, it is reduced, 

βm =  
1

δ
 

m−1

 ; so the other extreme that we propose 

is
1

σ
 

1

δ
 and it results 

m

m
c











/12

/1
.  

Therefore, particle size participates as 

diameter exponent d , seeing this exponent as an 

interpolation between the inverse of Feigenbaum 

constant and Stokes exponent, and being the spatial 

occupation index   the interpolator: 

  2
1

1 


 c . 

From the irregular surface we will highlight 

its roughness. We see irregular surface as sections of 

irregular curves that could be characterized as 
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Brownian curves of Hurst persistence index 

10,  HH , which have fractal dimension of 

H2  value. Roughness is dimensionlessby the 

diameter; we also perform its potential 

representation by   10,/1
2




qq
H

; therefore, a 

rougher surface than another corresponds to a larger 

dimension and, therefore, to a lower Hurst index, 

[12]. 

In paper [3] we saw that for a given fluid 

there is an inverse correlation between roughness 

height and kinetic energy transfer rate, so that on the 

rough surface the laminar layer cannot be formed, 

thus roughness extreme is linked to a 
m

  for some 

𝑚 > 1, which in turn corresponds to a value𝑐𝑚  of 

the diameter exponent:𝑐𝑚 =  1 − 𝛽𝑚  
1

𝛿
+ 𝛽𝑚2. 

Furthermore, if we assume 

  
mmmm

css  2,/121  , the expression 

𝐵𝑑 transform into𝐵𝑑  𝐷𝑑
𝑠𝑚𝑑2 , 𝐷𝑑

𝑠𝑚𝑑2 =
𝑐𝑡𝑒 𝑠𝑐𝑚  . 

On the other hand, in the dimensionless case we 

have: mm
ss

dmm
dctedDcs




3

*

3

*
*

,13 . 

Therefore, there is an interrelation between 

occupation index, derivative order, size exponent, 

Feigenbaum constant and m  branch order described 

by: 

  

1

1

,/121,
/12

/1



















m

m

s
c










(13) 

We can enunciate two types of formulas: 

one for the dimensional case of hydraulic slope; the 

other for the dimensionless case:  

 

 
 

*3

*

2

*

/
, dF

dCD

Ud
g

dDC

U

b

s

d

s

d

b























(14) 

Where in the dimensional case, left side, we 

have the manifestation of the drag force pair and in 

the right, that of the pair of effective weight or 

weight and flotation; while in the dimensionless, 

right side, ratio of drag force or drag is expressed 

with respect to the pair of weight and flotation as a 

form factor, being the form factor a generalization of 

the Rubey model with different formulations that we 

address in the following subsection. 

 

3.1 Formulas 

Below we present a sample of formulas that 

describe movement of small particles in fluids. Both 

those considered in [13], where experimentally the 

fall velocity in air of ice and snow particles are 

studying as a function of their size measured by a 

diameter, as well as some of the useful formulas for 

calculating velocity in the case of sediments [11]. 

We begin by exposing the generalization of 

one of the formulas coming from sediments issue, 

because this one opens the path of generalization. 

Rubey formula (1933), [10], which was proposed to 

obtain the falling velocity of roughness natural 

particleswith size between silt and gravel; for 

example silts, which are somewhat small particles 

that have diameters between 0.002 and 0.06 mm. 

In the impact velocity model of Rubey, 

𝑈velocity is factorized as:   FdgU
2/1

 , with 

 
3

*

3

*

*

36

3

236

dd
dF  ; or in the dimensionless 

formulation:  
*

2/3

*
/ dFdUd  . A generalized 

model of Rubey has the form: 

   
**

dFd
Ud c

b












(15) 

with different formulations for the form 

factor as it can be   nn

d

cte
h

d

cte
dF



**

*
 ,or the 

form factor found from Ossen drag coefficient: 

 

2

2/3

*

2

2/3

*

*

22






























Bd

A

B

C

Bd

A
dF

;these then we will also represent them as 

     
*

1

1

*
,

1

1
dxx

n
dF n

n 




 , with  𝑥 dependent on 

*
d . 

First we analyze dimensional formulations 

and then the dimensionless ones. We begin by 

considering models that arise from clouds 

phenomenon and their empirical formulas; and then 

those that have originated in sediments. Next, a data 

box is presented that includes: index, derivative 

order, branches order and branches number. 

 

 Magono (1953), [13]: he determined fall 

velocities of crystals and big and small snow 

particles by the stroboscopic method. Hypothesis is a 

drag force external to the crystal structure which 

determines that the square of the velocity is 

proportional to the square of its size, complemented 

by an internal force to the structure with the square 

of the velocity proportional to the cube of its size; so 

for the velocity, it is also an interpolation of powers 

1 and 3/2 of the crystal size. For small particles the 

velocity is assumed proportional to the square root 

of its size. Their experimental results can be adjusted 

by concave curves of square root type. His model is: 
2/1













bda

d
KU ,and we are going to consider:  
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 g
dDC

U

s

d

b

2



 under the form: K
dDC

U

s

d


2

2



and 
 

 
2

2

/

/1

dab

da

a
dD

s


 ,with dDdDC

ss

d

12 



, 

then 
 

 
dx

xab

xa

a
xD

s







2

2

1

/

/1 ; it becomes: 

 bda

d
dD

s




1 . Therefore: 
 

K
bdad

U


/

2

with 

   132,63.0,8.0,, Kba we get

  
2/1

63.08.0/132 ddU  and Magono model is 

obtained. Data box is (see equation 13): 

 

 

 
b c  s m 

Magono 1 1/2 0.16005 1.3800 2 

 

 Langleben (1954), [13]: he also calculated 

velocities of falling snowflakes by means 

photographs on a dark background. By means of the 

dimensional formula (14), 

  cb

s

d

b

dCgUg
dDC

U
 ,

2



 it is produced 

Langleen's model:   cb
dCgU  , with 

   62.0,2, cb , or: 
 31.0

kdU  . Data box is: 

 

 

 
b c  s m 

Langleben 2 0.62 0.22725 1.3800 2 

 

 Leslie model of "competent" velocity,"law of 

competent velocities" or "sixth power law", [14], 

where the weight or volume of the largest pebble 

which can be moved along the bottom of a stream 

varies with as the sixth power of the stream velocity. 

At particle scale, the square of this "competent" 

velocity would be proportional to the power 3/1 of 

the diameter. Data box is: 

 

 

 
b c  s m 

Leslie 2 1/3 
6.6727x10

-

2
 

1.6667 3 

 

Authors quoted by [10] are: Dubuat, Robinson, 

Blackwell, Login and Forbes (1857), Suchier (1924), 

Owens (1908), [15]. 

 

 Litvinov (1956), [13], with the dimensionless 

formula:   c

b

kdBdCgg
BdC

U






, , with 

    100,32.0,2,,
32.02

 kcbkdU  which is 

the Litvinov model for snowflakes. Data box is: 

 

 

 
b c  s m 

Litvinov 2 0.32 5.9256x10
-2

 1.68 3 

 

A model with an exponent of the value 

35/8c , would produce a branch order of  4m . 

 

 Allen [11]: with 

 
   2/3,2/3,,2.0

3/1

3/2




 cbd
g

U


, we have the 

model that is attributed to Allen. We calculate the 

data box: 

 

 

 
b c  s m 

Allen 3/2 3/2 0.72002 1/2 1 

 

It can also be seen as part of generalized Rubey 

type (15), if it is described by: 

2.0,2.0
2

*
 Fd

Ud



. 

 

 Newton [11]: this is the result that Newton 

proposed for a turbulent regime: 

   1,2,,82.1  cbdgU , it can be presented 

as:
 

 g

d

U

2

2

82.1

. Data box is: 

 

 

 
b c  s m 

Newton 2 1 0.44003 1 2 

 

As part of the generalized Rubey type it is 

described by: 82.1,82.1
2/3

*
 Fd

Ud



, (15). 

 Owens [11]: it was proposed in 1979 to obtain 

the fall velocity with a proportional constant that 

varies with sediment form and nature. But data box 

and Rubey model generalized are the same, 

difference lies in the empirical constant (

dgkU  ). Constant k  is dimensionless and 

varies with increasing round shape; but it also 

changes with grains nature being larger for sand than 

for quartz; it also seems to increase with grains size. 

Their values are of the type: 9.35,8.25,6.12,1.28. It is 

observed that Newton's model is within these values. 

 

 Maza and García [11]: in 1996 Maza and 

García result was available to estimate the critical 

average velocity of particles of diameter𝑑, or as a 

function of the critical Froude number, which are 
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considered applicable in the interval 

4.00001.0  d  [m]. It can be enunciated as: 

   10/7,2,,

7.4 10/7

2

2.0

2

















cbg

d
Rg

U

h

. 

Data box is: 

 

 
b c  s m 

Maza 

and 

García 

2 7/10 0.27204 1.3 2 

 

 Scotti - Foglieni [11]: on the other hand, 

sedimentation velocity can be estimate through an 

interpolation of a formula like Owens with another 

proportional to the first power of the grain size, so 

the Scotti - Foglieni formula arise 

ddU 3.88.3  . 

 

 Gold number: it is a model of theoretical order 

where the power is the gold numberc =
1+ 5

2
. Data 

box is: 

 

 

 
b c  s m 

Gold 

number 
1 

1 +  5

2
 0.7861 0.38199 1 

 

Know we can order data by the decreasing 

cvalue, see Table 1. 

 

Table 1. Results ordered according to the decreasing 𝐜 value. 

 

 
b c β s m 

Gold number 1 
1 +  5

2
 0.7861 0.38199 1 

Allen 1 3/2 0.72002 1/2 1 

Newton 2 1 0.44003 1 2 

Maza and García 2 7/10 0.27204 1.3 2 

Langleben 2 0.62 0.22725 1.3800 2 

Magono 1 1/2 0.16005 1.3800 2 

Leslie 2 1/3 6.6727x10
-2

 1.6667 3 

Litvinov 2 0.32 5.9256x10
-2

 1.68 3 

 

Regarding dimensionless formulations we 

had already considered Rubey, where velocity U  is 

factored as:   FdgU
2/1

 .

 
3

*

3

*

*

36

3

236

dd
dF  ; being its dimensionless 

formulation: (  
*

2/3

*
/ dFdUd  ), and a 

generalized Rubey model that acquires the form 

   
**

dFd
Ud c

b












with different formulations for 

form factor (15). 

 

We already mentioned (15) that for several 

models we can represent form factor as 

  nn

d

A
h

d

A
dF



**

*
 , with A  and h  positive 

constants,   a positive exponent, the idea is that the 

particle be so small that satisfy h
d

A




*

; then the 

following approach is valid 

    n

n

nn

n

x
n

x
dx

d

n

n
x

n

n
x

1

1/1/1

/1

1

1

11






















; and we obtain therefore the approximation: 





b
n

n
b

d
An

Ud

*

1

1

1

1





















 ,  

n

n
c

1
b


 

where the exponent of the diameterd∗can be observe 

in the dimensionless expression. To formulate a 

model that provides something new with respect to 

Stokes, discrepancy number is required: 

3
1








 


n

n

bb

c 
 . Also, we could simplify a bit 

if we assume that 3, 
b

cn
cn . 

 In [6] the model is described by: 

 
2/3

2

*
52.125  d

Ud



,  
**

3/2

dFd
Ud












with the form factor:  
2

*

2

*

*

25
2.1

25

dd
dF  ; 

and 3 ,then the discrepancy criterion is not 

satisfied for Cheng. 

 Also in [6] Zhang (1989) is cited as: 
22

95.1309.195.13 


















d
dg

d
U

 , or 
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 
*

2/3

*
dFd

Ud




 being 

 

2

2/3

*

2

2/3

*

*

95.13
09.1

95.13































dd
dF . We 

evaluate for Rubey and Zhang: 3  and neither is 

satisfied. 

 In [6] Zanke model (1977) is cited: 

 101.0110
2

*
 d

d
U

 , which is: 

 
**

dFd
Ud




, with  
2

*

2

*

*

100
1

100

dd
dF  . 

We evaluate Zanke: 2  and this one satisfies it. 

 In [16] Camenen model is considered: 

   
*

2/3

*

/1

dFd
Ud k

k












, with 

 

kkk

dB

A

BdB

A
dF

/2

2/3

*

/1/2

2/3

*

*

1

4

1

3

41

4

1








































 

When evaluating discrepancy criterion: 

3 , we see that it does not satisfy either; therefore 

the criterion is not satisfied neither Camenen, nor 

Rubey, nor Cheng, nor Julien, [1]. It is observed in 

(15) that this model is contained in the generalized 

Rubey with 
3

4
,1  Ck , value linked to the 

volume that arises in specific cases of rigid sphere 

and ellipsoid, while for the cylinder it is 2C . It 

also contains Rubey case: with 

3

2

3

4
,36

4

1
,1

2











BB

A
k , and doing 

24,2  AB  it recovers 

 
3

*

3

*

*

36

3

236

dd
dF  . 

Therefore, after evaluating the 

aforementioned models with respect to discrepancy 

number, we observe that only Zanke brings 

something new compared with the classic Stokes 

model. 

 

IV. GRAPHS 
We now graph the proposed relationship 

between the index   and the diameter power (see 

Figure 1), if we use the dimensionless diameter, the 

straight line would move to the right and descend 

from the value 3 for Stokes model. 

 

 
Figure 1:𝟏/𝛅 = 𝟎. 𝟐𝟏𝟒 , Index 𝛃as function of 

power. 
 

Graph in Figure 1 highlights values 

obtained experimentally, except the first two, by 

different researchers and in various disciplines. Data 

correspond to Stokes, Rubey, Allen, Owen, Maza, 

and others.  

Now, in Figure 2, we graph the proposed 

relationship between branch order (m)and derivative 

order(s). 

 

 
Figure 2: Relationship between branch order (𝐦) 

and derivative order(𝐬), both variables 

dimensionless. 

 

It is observed that in only 6 steps it reaches 

an almost saturation stage which corresponds to 

developed turbulence, derivative order is of s =
1.7858, and branches number of sixth order of  

26 = 64, in Feigenbaum tree. 

 

V. CONCLUSIONS 
A relation proposal between Feigenbaum 

constant and spatial occupation index is obtained, 

through the link with the diameter exponent of the 

considered particle. Particle size power decreases 

from the value 2 for the linear viscous layer, it goes 

through the inertial range, until to reach the inverse 

of the Feigenbaum constant, in the developed 

turbulence regime. Concomitantly, the spatial 

occupation index drops from the value 1 in the 

laminar layer, going through the inertial range until 

approaching to 0 in the fully developed regime. 
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The basis of our analysis is the fractional 

version of the Navier-Stokes equation. We take a 

shortcut by means the Sain-Venant fractional 

equation as an alternative argument, and reconsider 

the result published in [2] to obtain the presentation 

(14). 

We reinterpret Rubey's formula to 

generalize it, which offers us an alternative way to 

enunciate various models of formulas considered. 

We developed a criterion to differentiate models of 

the classic Stokes. 

It is observed that almost all formulas are 

located in the inertial range of the fluid movement 

but scarcely describe the sublaminar layer, which we 

would consider to be described by branch order or 

bifurcation of order 2 or 3. In particular, Litvinov 

stands out, which produces the highest branch order. 
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