
Sreevani Nanjuri N Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7 (Part -IV) July 2018, pp 04-08

www.ijera.com DOI: 10.9790/9622-0807040408 4 | P a g e

Functional and Assertion Based Verification of Audio Echo Effect

Unit

Sreevani Nanjuri N
l
 , Nagesh .K.N

2
, Yaseen Basha

3

 1
Department of ECE, PG Student, NCET, Bengaluru, India,

 2
Department of ECE, Professor & Hod, NCET, Bengaluru, India,

3
Department of ECE, Assistant professor, NCET, Bengaluru, India,

Corresponding Author: Sreevani Nanjuri N

ABSTRACT
The aspect ratio of MOS (Metal oxide semiconductor) Transistors are scaling down, designer are able to put

more circuit with various functionality on a single die. This made design and verification process complex. If we

consider today’s system on chip (SOC) design, it is impossible to check all possible combination of input on

design. To verify complex design successfully various verification techniques are exists. Successful verification

is very much required for design signoff. There are various verification techniques like functional verification,

equivalence checking, model checking, code and functional coverage, Assertion based verification are employed

in verification process. In this paper, the sub modules such as Counter, Subtractor, Multiplexer, Memory unit and

a Multiplier is designed and verified. Using these sub modules the top module for audio echo effect unit is

designed and verified with test benches (functional). The Assertion based verification is performed on the top

module.

Keywords-:Audio echo effect unit, Functional Verification, Assertion Based Verification, Verification

Approaches.

Date of Submission: 11-07-2018 Date of acceptance: 25-07-2018

I. INTRODUCTION
Verification[1] is a procedure used to

exhibit that the goal of configuration saved in it's

execution. Today, the period of multi-million-gate

Application Specific Integrated Circuits (ASIC's),

reusable intellectual property (IP) and system on-

chip (SoC)[2] plan check expends 70% of outline

endeavors. Because of this number of verification

architects can be double the quantity of Register

Transfer level (RTL) Designers. Verification

moment can be lessened through parallelism.

Verification time can be decreases through

automation.

II. DIFFERENT TYPES OF

FUNCTIONAL VERIFICATION

APPROACHES
There are three complementary functional

verification approaches.

BLOCK-BOX verification

WHITE-BOX verification

GRAY-BOX verification

2.1 BLOCK-BOX Verification

 In this confirmation, without any

understanding of the real realization of the design

the functional

verification[1] can be performed. The

benefit of block-box verification is that it is

independent on any exact implementation whether

the implemented in a single ASIC, RTL code. It is

hard to observe and control precise features in block-

box verification. Critical functions, deep into the

design will be complicated to manage and monitor.

2.2 WHITE-BOX Approach

This approach has intimate information of

the internals of a plan and also has control over it.

The advantage of this approach is being able to add

any interesting arrangement of states and inputs

quickly, or to separate a desired function based on

requirement.

2.3 GRAY-BOX-Verification

It is understand between White-box

verification and block box verification. This means,

block- box may not fully use all parts while the

white box is not convenient. A gray-box approach

commands and notices a plan completely through its

top level interfaces (block-box).

III. FORMAL VERIFICATION

It is a method of verifying whether the

design fulfills the specific requirement or not

(properties).Formal verification[3] does not remove

the requirement to write test-benches. Once you

follow what the conclusion points of the formal

RESEARCH ARTICLE OPEN ACCESS

http://www.ijera.com/

Sreevani Nanjuri N Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7 (Part -IV) July 2018, pp 04-08

www.ijera.com DOI: 10.9790/9622-0807040408 5 | P a g e

verification reconvergent paths are, you be familiar

with what perfectly is being established. The main

application of formal verification falls under two

categories, they are

1) Equivalence checking

2) Model checking

3.1 Equivalence checking

Equivalence checking differentiates two

models. The most common advantage of

equivalence checking is it balance two net lists to

make sure that some net list post-processing, for

example clock-tree synthesis or physical alteration,

chain insertion, did not modify the process of the

path. In the synthesis software it can find bugs,

another general use of equivalence can find bugs,

another general use of equivalence checking is to

find that the net list properly perform the original

RTL code.

3.2 Model checking

The most recent application of the formal

verification technology is model checking. It

confirms assertions about the performance of the

design. A most influential model checker may be

capable to detect if deadlock condition can arise. In

it design assertions or characteristics are formally

verified or disproved.

IV. ASSERTION BASED VERIFICATION

Assertions[4] institutionalization

accomplishments hold the guarantee of enhancing

verification proficiency and enabling formal check

to work with simulation.

4.1 System Verilog Assertions

 Statements are basically used to approve

the conduct of a plan and they may also be utilized

to give useful scope in development to an outline.

Affirmations can be checked powerfully by

recreation, or statically by a different property

checker apparatus, formal confirmation instrument

that demonstrates regardless of whether a plan meets

its specification. There are two kinds of statements

characterized in the system verilog language.[5]

4.2 Concurrent assertions

Based on clock cycles and test articulation

is assessed at clock edges in light of the inspected

estimations of the factors included. Inspecting of

factors is done in the preponed area and the

assessment of the articulation is done in the watched

locale of the scheduler. These can be put in a

procedural block, a unit, an interface or a program

explanation. Concurrent declarations be able to

utilized with together static and dynamic

confirmation devices.

4.3 Immediate assertions

 Immediate assertions are procedural

proclamations and are mostly utilized as a part of

simulation. An assertion is essentially a statement

that something must be valid, like the If statement.

Test articulation is assessed simply like some other

extremely log articulation inside a procedural block.

These are not worldly in nature and are assessed

instantly and must be put in a procedural square

definition. Quick declarations utilized just with

dynamic simulation[6].

4.4 Assertions

It is a description of a property of the plan,

If the property that is being checked for a

reproduction does not carry on the way we guess,

the assertion comes up short. The property that is

not allowed from occurring in an outline occurs

amid recreation, the statements falls flat. A list of

properties can be taken from the useful detail of a

plan and can be changed over in to assertions. The

assertions can be constantly checked amid

functional simulation. It is likewise called as screens

or checkers. The Assertions formally written in

System verilog, so it is typically called System

verilog Assertion (SVA). It doesn't written in verilog

in light of the fact that verilog has few detriments,

they are Verilog is a procedural dialect and

henceforth, does not have great control after some

time. It is a verbose dialect. it implies as the

assertions builds, it is extremely hard to keep up the

code. Verilog has no worked in system to give

utilitarian scope information. Verilog checkers may

not catch all the activated occasions. The real

distinction between the model checking and

Assertion based Verification[7] is all the more

ground-breaking then the model checking.

V. AUDIO ECHO EFFECT DESIGN
An audio echo effects unit that works by

delay the samples of an acoustic signal indicated as

a flow of 16-bit 2s-complement binary- coded

standards. The sample rate is 50kHz.Appearance of

a original input trial is represented by a control

input, audio_in_en, being 1 for the clock cycle in

which the model arrives. The component should

point out accessibility of an productivity model

using an yield control sign, audio_out_en, in the

similar method.

The holdup time is found by an 8-bit

unsigned input illustrating the number of

milliseconds of holdup. We can delay the incoming

acoustic model values by saving them in a memory

until they are essential at the yield. The highest

delay articulated by 8-bit unsigned input is 255ms.

because samples appear at a speed of 50 kHz (that

is, 50 per millisecond), we require to stock up up to

12,750 samples. A 16K X 16-bit memory, with 14-

bit addresses, will be sufficient. A figure of the data

path additionally the memory and additional

http://www.ijera.com/

Sreevani Nanjuri N Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7 (Part -IV) July 2018, pp 04-08

www.ijera.com DOI: 10.9790/9622-0807040408 6 | P a g e

mechanism to calculate addresses revealed in the

figure1.

We require to utilize a 14-bit counter to maintain

track of wherever sample arrives, we keep it at the

subsequently accessible memory location, whose

address is specified by the counter. We after that

read from the memory the value written d

milliseconds in the precedent (where d is the value

of the delay input) and give it at the yield, then

increase the counter to refer to the next position in

memory. The value written d milliseconds formerly

is stored 50 X d locations earlier to the existing

location specified by the address counter. Therefore

we can calculate its address by multiplying d by 50

and subtracting the end product from the value of

the address counter. The counter will rise to utmost

address value then wrap around to 0, efficiently

augmenting modulo 16K. Thus, formerly the

memory is overflowing, older locations will be over

written with recently inward samples. When we

complete the subtractor will yield the distinction

Fig 1: Functional diagram of Audio Echo Effect

Unit modulo 16K, and require to be provide the

correct address of the necessary delayed sample.

VI. RESULTS & DISCUSSIONS

6.1 14-Bit Counter

Fig 2: Block diagram of counter

Fig 3: Simulation wave form of 14-bit counter

When clock & count_enable is high, the output of q

increases q= 14’b 0000 0000 0000 00 to q=14’b

0000 0000 00 1111.

Once complete the 14 bits it falls to zero and again

starts increases upto 14 bits.

Table 1. Power analysis of 14 bit counter

Power analysis 45nm 180nm

Leakage power(nW) 10.165 40.213

Dynamic power(nW) 8344.540 46857.704

Total power (nW) 8354.704 46897.918

6.2 Multiplier

Fig 4: Simulation wave form of multiplier

At #0 ns the input a=00000001 and input

b=0000001 the product of the a & b is

p=00000000000001;

At #4 ns the input a=00000010 and input

b=0000010 the product of the a & b is

p=00000000000100;

At #9 ns the input a=00000011 and input

b=0000101 the product of the a & b is

p=0000000000 1111;

6.3 14-Bit Subtractor

Fig 5: Block diagram of 14-bit Subtractor

Fig 6: Simulation wave form of 14-bit Subtractor

http://www.ijera.com/

Sreevani Nanjuri N Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7 (Part -IV) July 2018, pp 04-08

www.ijera.com DOI: 10.9790/9622-0807040408 7 | P a g e

When a=0000 0000 000000, b=10000000000000,

borrow=1, difference=10000000000000;

When a=11100000000000, b=00000000000000,

borrow=0, difference=00011111111111;

When a=11111000000000, b= 00000000000001,

borrow=0, difference=11110111111000;

Table 2. Power analysis of 14 bit Subtractor

Power

analysis

45nm 180nm

Leakage power

(nW)

8.044 38.630

Dynamic

power (nW)

8259.791 46817.159

Total power

(nW)

8267.835 46855.789

6.4 2-1 Multiplexer

Fig 7: Simulation waveform of 2X1 multiplexer

When

mux_out=0,count_in=1,sub_out_in=0,adder_sel=0

When

mux_out=1,count_in=1,sub_out_in=0,adder_sel=1

When

mux_out=0,count_in=1,sub_out_in=0,adder_sel=0

Table 3. Power analysis of 2-1 Multiplexer

Power analysis 45nm 180nm

Leakage power (nW) 0.495 1.34

Dynamic power (nW) 303.199 667.708

Total power (nW) 303.694 669.022

6.5 16-Bit memory

Fig 8: Simulation waveform of 16-bit memory

At#2ns

data_in=0000000000000011,addr=00000000001111

,

write=high, enable=high,

audio_out=0000000000000011.

At#8ns

data_in=0000000000001011,addr=00000000000111

,

write=high,en=high,audio_out=0000000000000011

Table 4. Power analysis of 16-bit memory

Power analysis 45nm 180nm

Leakage power(nW) 630.635 1147.807

Dynamic

power(nW)

22572.603 243192.0

60

Total power(nW) 23203.238 244339.8

67

6.6 Audio echo effect Unit

Fig 9:Simulation waveform of Audioecho effect

unit

From the waveform at at 2ns, count_en is

high, c2=0000 0000 0000 0001 and addr_sel is zero

the inputs data_in =0000 0000 0000 1111; write is

high and enable is high , the output of the audio_out

is data_in.

From the waveform at at 10ns, count_en is

high, c2=0000 0000 0000 0001 and addr_sel is one

the inputs data_in =1111 0000 0000 1111; write is

low and enable is high , the output of the audio_out

is previous output.

VII. ASSERTION BASED

VERIFICATION PROPERTIES &

RESULTS
Property p1;

@ (posedge clk) ! (addr_sel);

Endproperty

 a1:assert property(p1);

Property p2;

@ (posedge clk) (en&!wr);

Endproperty

 a2:assert property(p2);

Property p3;

@ (posedge clk) (en&wr);

Endproperty

http://www.ijera.com/

Sreevani Nanjuri N Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7 (Part -IV) July 2018, pp 04-08

www.ijera.com DOI: 10.9790/9622-0807040408 8 | P a g e

 a3:assert property(p3);

Fig 10: Assertion based verification simulation

clk=0,count_en=0,a=00000001,b=0000001,p=00000

000000001,addr_sel=1,data_in=0000000000000011,

wr=1,en=0,audio_out=xxxxxxxxxxxxxxxx.

ncsim: *E,ASRTST (./design.v,337):(time 1 NS)

Assertion topmodule_test.a1 has failed

ncsim: *E,ASRTST (./design.v,307): (time 1 NS)

Assertion topmodule_test.a3 has failed

ncsim: *E,ASRTST (./design.v,297): (time 1 NS)

Assertion topmodule_test.a2 has failed

At 1ns the property p1, property p3 and property p2

are failed because its not satisfy the property rules.

When en&wr both are high ,the property p3 satisfy

or else it fails.

When en is high and wr is low, the property p2

satisfy or else it fails.

These three conditions are failed at 1ns.

clk=0,count_en=1,a=00000011,b=0000101,p=00000

000001111,addr_sel=1,data_in=1111000000001111,

wr=0,en=1,audio_out=0000000000001111

ncsim: *E,ASRTST (./design.v,337): (time 7 NS)

Assertion topmodule_test.a1 has failed.

at #7ns the above property 1 failed. because addr_sel

is 1 at 7ns.

VIII. CONCLUSION
Audio echo effect unit is designed and

verified successfully. Initially basic functionality of

the audio echo effect unit is verified using test

bench. After verifying basic functionality, the

different properties of assertions are verified.

Functional and assertions results are presented in

this paper. Functional verification is applied on

different sub modules of Audio echo effect design

such as, 14-bit Subtractor, 14-bit counter and

multiplier, multiplexer as well as memory unit.

Assertion based verification is applied for main

module audio echo effect unit. System very log

Assertions are used to apply this verification

technique. Simulation results are shown for both

functional and assertion based techniques.

FUTURE SCOPE OF WORK
Today’s SoC/ASIC designs are more

complex, it is impossible to verify the functionality

of the designs using test benches. So assertion based

technique plays a very important role in finding the

bugs in the design. Before manufacturing any design

such as SoC/ASICs it is very essential to verify the

design using formal verification technique.

REFERENCES
[1]. A.Fedeli,F.Fummi,and g. Pravadelli. “properties

Incompleteness Evalution by Functional

Verification,” IEEE Trans. Computers, vol.56, no.4

Apr 2007, pp.528-544

[2]. Prakash Rashinkar and peter Paterson, system-on-

chip-verifictaion Kluwer academic

publishers,2002,ISBN 0-306-46995-2.

[3]. D.W.Currie,A.J.Hu,S.Rajan,M.Fujita,”Automatic

Formal Verification of DSP Software”,

Proc.Design Automation Conference,pp.130—

135,jun.2000

[4]. Nicola Bombieri, Franco Fummi, and graziano

Pravadelli, “Hybrid, Incremental Assertion-Based

Verification for TLM Design Flows” IEEE CS

press, 2007.

[5]. A.Dahan et al., “Combining System Level

Modeling with Assertion Based Verification ,”

Proc. 6th int’l Symp. Quality Electronic Design

(ISQED 05),IEEE CS Press, 2005,pp.310-315.

[6]. Chandy,K.M.,Misra, J.1979. Distributed simulation:

A case study in design and verification of distributed

programs. IEEE Trans. On Software. Eng. SE-5,

5(sep 1979).

[7]. Srikanth Vijayaraghavan and Meyyappan, a

practical guide for system verilog assertions,

Springer, 2005

Sreevani Nanjuri N "Functional and Assertion Based Verification of Audio Echo Effect Unit

"International Journal of Engineering Research and Applications (IJERA) , vol. 8, no.7, 2018,

pp.04-08

http://www.ijera.com/

