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I. INTRODUCTION 
Great (last) Fermat's theorem was 

formulated over 300 years ago. In view of the 

significance of the problem in many areas of 

mathematic, large, but unsuccessful efforts have been 

made to prove it. Finally, in [4], a theorem was 

proved that was accepted by mathematicians and 

based on its connection with the theory of modular 

elliptic curves. The proof is too complicated, so 

attempts were made to find a simple proof in the 

framework of the number theory. In particular, in [1 – 

3] we investigate alternative methods for proving of 

this theorem. The theorem of P. Fermat, as is known, 

asserts that equation 

p p px y z       (1) 

has no positive integer solutions for p > 2. In this 

paper, we prove this theorem in a way in the 

framework of elementary number theory.  

 

II. RESTRCTIONS ON POSSIBLE 

SOLUTIONS OF THE EQUATION AND 

ADMISSIBLE TRANSFORMATIONS 
To prove the theorem, we consider 

restrictions on the possible solutions of equation (1). 

Let us formulate the first restriction. Put for 

definiteness that x < y, i.e. x always means the 

smallest number on the left. Since the numbers x, y, z 

are all different, we have the following inequality: 

( )p p px y x y   .     (2) 

If a is a positive integer, then a fortiori 

( )p p px y x y a    .     (3) 

From inequalities (2), (3) and the form of equation 

(1), the first restriction for numbers as possible 

solutions of equation (1) follows:  

max( , ) ( )x y z x y   .     (4) 

The second restriction is associated with the obvious 

requirement that the number 
p px y ends in the 

same digit as the number 
pz . In particular, it follows 

that the left and right sides of equation (1) must be of 

the same parity. Let us formulate the third restriction. 

If the following relation holds  

2 2 2x y z   ,       (5) 

then x, y, z are not solutions of the basic equation (1). 

In this case, strict inequalities hold 

3 3 3x y z  , 

4 4 4x y z  ,... 

p p px y z  .         (6) 

 

Indeed, multiplying (5) by z and using the left-hand 

side of inequality (4), we have 
3 2 2 3 3z zx zy x y    . Multiplying this 

inequality by z and using (4), we obtain 
4 3 3 4 4( )z z x y x y     etc. The fourth 

restriction is the equality of the exponents of all 

components in equation (1). The restrictions 

formulated are necessary conditions for numbers to 

be solutions of the basic equation (1). They are quite 

strong and allow us to select the proposed solutions 

for equation (1). The second and fourth restrictions 

are called basic, since their fulfillment is an 

unconditional requirement. The first and third 

restrictions are auxiliary and can be provided through 

transformations (see below). Now consider the 

permissible transformations that keep safe the 

restrictions. As the starting point we take the 

"elementary" bases of degree – the smallest natural 

numbers from the first tens that satisfy the basic 

restrictions. Such transformations include: 
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1. Multiplication of all bases of degree in (1) by a 

positive integer l = 2, 3, …. Since the starting point is 

"elementary" bases, division is excluded. 

2. An increase of one, two or all three bases by a 

number 10a k
 
that is a multiple of 10, where k = 

1, 2,…. Since the starting point is "elementary" bases, 

the first increase is 10. 

3. If two triplets of numbers , ,x y z
 

and 

, ,x y z   satisfy the second restriction, then the 

triplet of numbers (bases) {
p px x x   , 

p py y y   , 
p pz z z   }satisfies this 

restriction. 

We call triplets obtained from elementary 

triplets through transformations, derived triplets. The 

first transformation is useful for obtaining from the 

known solution all solutions of the same class. For 

example, it can be used to obtain solutions of 

equation (1) for p = 2 (see below). In our proof it is 

not used. This transformation does not change the 

"status" of the triplet, i.e. if the triplet is not a solution 

of (1), then after this transformation it will not be a 

solution of (1). Therefore, in proving the theorem 

without loss of generality, it is sufficient to consider 

only prime triplets, namely, those in which the bases 

do not have a common divisor different from 1. The 

second transformation is used to provide the first 

restriction (4) if it does not hold for "elementary" 

bases, but the second restriction holds. This 

transformation is the main one in the proof. The third 

transformation can be applied only if some solution is 

known, for example, when solving equation (1) for 

p = 2. In our proof it is not used. Thus, the main 

"generator" of allowed combinations of triplets of 

numbers is the second transformation. By induction 

on the number 10 it is easy to prove that the second 

transformation allows us to go over all the numbers 

that are admissible by restrictions. Let's take a 

detailed look at the second restriction, for which we 

analyze the degrees of "elementary" numbers (bases) 

from 1 to 10, starting with degree 3. We have 

replaced 10 by 0, so as not to violate the uniformity 

of the representation (see below). The results are 

presented in table 1. 

 

Table 1: Admissible ends of powers for elementary bases 
Number 

 

Last digit of 

number 
 

Number 

 

Last digit of 

number 
 

Number 

 

Last digit of 

number 
 

Number 

 

Last digit of 

number 
 

32  
8 33  

7 34  
4 35  

5 

42  
6 43  

1 44  
6 45  

5 (repeat) 

52  
2 53  

3 54  
4 (repeat)   

62  
4 63  

9     

72  
8 (repeat) 73  

7 (repeat)     

Number 

 

Last digit of 

number 
 

Number 

 

Last digit of 

number 
 

Number 

 

Last digit of 

number 
 

Number 

 

Last digit of 

number 
 

36  
6 37  

3 38  
2 39  

9 

46  
6 (repeat) 47  

1 48  
6 49  

1 

  57  
7 58  

8 59  
9 (repeat) 

  67  
9 68  

4 

  77  
3 (repeat) 78  

2 (repeat) 

Number 

 

Last digit of 

number 
 

Number 

 

Last digit of 

number 
 

30  
0 31  

1 

40  
0 (repeat) 41  

1(repeat) 

 

It follows from the data in table 1 that the 

repetition period of the last digit for bases 2, 3, 7 and 

8 is 4, for bases 4 and 9 the period is 2, for bases 5, 6, 

0 and 1, the period is 1. Now we consider 

combinations of powers of different bases, taking 

into account the basic restrictions. The analysis is 

performed in the following order. First, we consider 

combinations of numbers with period 4, i.e., powers 

of 2 are combined consistently with the degrees of 

the numbers 3, 4,..., 0, 1, then the number 3 is 

combined with the remaining, the number 7– with the 

remaining, the number 8 – with the remaining. After 
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that, the bases with a period of 2 are combined, i.e. 

number 4 – with the numbers 5, 6, 9, 0 and 1, then 

the number 9 – with 5, 6, 0 and 1. Lastly, the 

numbers with period 1 are combined, i.e. number 5 

with the numbers 6, 0 and 1, the number 6 – with 0 

and 1, the number 0 – with 1. Note that some of the 

combinations can be immediately excluded due to 

violation of the second restriction. The results of the 

analysis are given in table 2.  

 

Table 2:Combination of ends for "elementary" bases permissible under basic restrictions 
kkk 232323 532    

kkk 434343 143    
kkk 434343 347    

kkk 434343 648    
kkk 242424 042    

5 4 5 4 5 43 4 7k k k     
kkk 454545 147    

kkk 454545 248    

5 4 5 4 5 42 4 6k k k     
6 4 6 4 6 43 4 5k k k     

kkk 464646 547    
kkk 464646 048    

kkk   333 752  
kkk   333 853  

kkk   333 257  
kkk 434343 358    

kkk 444444 152    
4 4 4 4 4 43 5 6k k k     

kkk 444444 657    
kkk 444444 158    

kkk 464646 352    
kkk 464646 253    

kkk 444444 457    
kkk 242424 758    

kkk 434343 462    
3 4 3 4 3 43 6 7k k k     

kkk 242424 857    
kkk   333 358  

kkk 454545 862    
5 4 5 4 5 43 6 9k k k     

3 4 3 4 3 47 6 9k k k     
kkk 464646 758    

kkk 464646 062    
kkk 464646 563    

kkk 454545 367    
kkk 434343 268    

kkk 434343 172    
kkk 232323 073    

kkk 464646 567    
kkk 454545 468    

kkk 454545 972    
3 4 3 4 3 43 8 9k k k     

kkk 232323 587    
kkk 464646 068    

kkk 232323 082    
kkk 454545 183    

kkk 434343 897    
kkk 434343 198    

kkk 434343 392    
kkk 434343 693    

kkk 454545 697    
kkk 454545 798    

kkk 454545 192    
kkk 454545 293    

kkk 464646 097    
kkk 464646 598    

kkk 464646 592    
kkk 464646 293    

kkk 444444 107    
kkk 242424 208    

kkk 434343 912    
kkk 464646 093    

kkk 464646 307    
kkk 444444 608    

kkk 444444 402    
kkk 242424 703    

kkk 464646 547    
kkk 434343 718    

kkk 242424 802    
kkk 444444 903      kkk 454545 918    

5 4 5 4 5 42 1 3k k k     
kkk 434343 213    

kkk   333 165  
kkk 464646 518    

6 4 6 4 6 42 1 5k k k     
kkk 454545 413    

kkk   333 165  
kkk 444444 958    

  kkk 464646 013    
kkk   333 615    

kkk 434343 954      kkk 444444 365    
kkk 434343 316    

kkk 444444 354    
kkk   333 459  

kkk 444444 765      

4 4 4 4 4 44 5 7k k k     
kkk 242424 659      kkk 444444 310    

kkk 434343 064    
kkk 444444 259     kkk 444444 710    

kkk 434343 794    
kkk 444444 859     kkk 242424 910    

kkk 444444 204    
kkk 232323 569       

kkk 444444 804    
kkk 242424 109      

kkk 434343 514    
kkk 444444 309      

  kkk 444444 709      

 kkk 232323 019      

     

 

Note. The relationships given in table 2 do 

not mean actual equality and they are symbolic 

notation representing the fulfillment of the basic 

restrictions necessary for equation (1), namely, the 

coincidence of the exponents of all components and 

the coincidence of the last digit, to which the left and 
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right sides of equation (1) end; the first number in the 

exponent is the smallest permissible exponent; k = 1, 

2, 3,…. 

The data of table 2 we use to select the 

permissible combinations of elementary bases by 

means of the first and third restrictions. We have 

replaced 0 and 1 by 10 and 11 respectively, i.e. the 

smallest bases that make sense. Here we give 

selective results of the analysis of combinations for 

base 2. We have 
3 4 3 4 3 42 3 5k k k    (here and 

below k = 1, 2, ....) – the combination is impossible 

because of condition (4); 
5 4 5 4 5 42 3 5k k k     is 

impossible because of condition (4); 
3 4 3 4 3 42 4 8k k k    – impossible by virtue of (4); 

4 4 4 4 4 42 4 10k k k    – impossible by (4); 

5 4 5 4 5 42 4 6k k k   
 

is impossible by virtue of 

(4); 
6 4 6 4 6 42 4 10k k k     is impossible by virtue 

of (4) and so on. Similarly, analysis is performed for 

other elementary bases (see table 2). The results of 

the analysis show that the "candidates" for the 

solution of equation (1)  satisfying the basic 

restrictions are the following combinations: 
6 4 6 4 6 43 4 5k k k    , 

4 4 4 4 4 43 5 6k k k    , 

3 4 3 4 3 43 6 7k k k    , 
3 4 3 4 3 43 8 9k k k    , 

6 4 6 4 6 43 9 10k k k    , 
4 4 4 4 4 47 5 8k k k    , 

6 4 6 4 6 47 5 8k k k    , 
3 4 3 4 3 47 6 9k k k    , 

6 4 6 4 6 47 9 10k k k    , 
4 4 4 4 4 47 10 11k k k    , 

3 4 3 4 3 48 9 11k k k    , 
6 4 6 4 6 48 10 12k k k    , 

kkk 444444 765   , 
kkk 444444 985   , 

kkk 242424 11109    and several others (for 

completeness of consideration, we have included 

several bases from the second ten). Applying 

conditions (5), (6) to these combinations, we see that 

most of them can not be a solution of equation (1) for 

p > 2. After selection according to the conditions (5), 

(6) remain combinations:
4 4 4 4 4 47 5 8k k k    , 

kkk 444444 985    
6 4 6 4 6 47 5 8k k k    , 

3 4 3 4 3 47 6 9k k k    , 
kkk 444444 765    

6 4 6 4 6 47 9 10k k k    , 
4 4 4 4 4 47 10 11k k k    , 

3 4 3 4 3 48 9 11k k k    , 
kkk 242424 11109   , 

6 4 6 4 6 48 10 12k k k    , 
3 4 3 4 3 48 14 16k k k    ,  

which should be considered separately, since for 

them the conditions (5), (6) are not satisfied. How to 

make sure, that not a combination of elementary 

bases is lost. We must consider elementary bases 

(triplets) for which the strict inequality exists in 

relation (5), and all other restrictions are satisfied. 

The elementary triplet (3, 4, 5) corresponds to the 

equality of the left and right sides in (5). Therefore, 

interest is represented by bases for which the 

relations 3 < x < y < z ≤ 10 are satisfied, which 

immediately gives the desired result. We have five 

elementary prime triplets: (5, 6, 7), (5, 7, 8), (5, 8, 9), 

(6, 7, 9) and (7, 9, 10). This result shows how 

effective simple restrictions are used. We note that 

such an analysis, taking into account possible 

transformations, allows us to obtain solutions of the 

quadratic equation for p =2. For "elementary" bases, 

such solutions are obtained as an additional result of 

our study (see below). It is easy to verify that the 

theorem is true for elementary prime triplets. Indeed. 

For triplet (5, 6, 7) we have 5
2
 + 6

2 
> 7

2
, but 

 
5

3
 + 6

3
 < 

7
3
,  therefore all other powers of these bases will give 

the same result (zero is passed). For triplet (5, 7, 8) 

we have 5
2
 + 7

2 
> 8

2
, but 5

3
 + 7

3
 < 8

3
 and 5

4
 + 7

4
 < 

8
4
(zero is passed). For triplet (6, 7, 9) we obtain 6

2
 + 

7
2
 > 9

2
, but 6

3
 + 7

3
 < 9

3 
(zero is passed). For triplet (5, 

8, 9) we have 5
2
 + 8

2 
> 9

2
, but 5

3
 + 8

3
 < 9

3
(zero is 

passed). For triplet (7, 9, 10) we obtain 7
2
 + 9

2
 > 10

2
, 

7
3
 + 9

3 
> 10

3
, but 7

4
 + 9

4
 < 10

4 
(zero is passed). 

Similarly, we verify the validity of the theorem for 

the remaining triplets. For triplet (7, 10, 11) we have 

7
2
 + 10

2 
> 11

2
, 7

3
 + 10

3 
> 11

3
, but 7

4
 + 10

4
 < 11

4
 (zero 

is passed). For triplet (8, 9, 11) we have 8
2
 + 9

2
 > 11

2
, 

but 8
3
 + 9

3
 < 11

3 
(zero is passed). For triplet (9, 10, 

11) we obtain 9
2
 + 10

2
 > 11

2
, 9

3
 + 10

3 
> 11

3
, 9

4
 + 

10
4 
> 11

4 
, but 9

5
 + 10

5
 < 11

5 
(zero is passed). For 

triplet (8, 10, 12) we have 8
2
 + 10

2
 > 12

2
, but 8

3
 + 10

3
 

< 12
3 

(zero is passed). For triplet (8, 14, 16) we have 

8
2
 + 14

2 
> 16

2
, but 8

3
 + 14

3
 < 16

3 
(zero is passed) and 

so on (see tables 3 – 6). We note that triplets (8, 10, 

12), (8, 14, 16) reduce to elementary triplets (4, 5, 6), 

(4, 7, 8) for which the theorem is obviously satisfied 

by virtue of the second restriction. 

 

III. PROOF OF THE THEOREM AND 

STUDY OF THE PROPERTIES OF 

ASSUMED SOLUTIONS 

Let us prove in general case that equation (1) 

cannot have solutions among natural numbers. 

According to the rule of Descartes, increasing the 

variable by a number a decreases all roots by the 

same number. As we have shown in the foregoing 

analysis, for elementary bases (triplets) there are no 

solutions of (1) among the natural numbers for p > 2, 

therefore with increasing bases by the number 

a = 10k, a fortiori there will be no such solutions. 

Indeed, equation (1) admits a representation 

( ) ( ) 0p p pz u z v z     , where x, y, z are 

elementary bases, and x z u  , y z v  . We 

will consider z as a variable, and u and v as 

parameters. The resulting equation considered with 

respect to z, of course, has roots. If these roots are not 
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natural numbers, then the theorem is proved. Suppose 

that this equation has at least one natural root (if there 

are several, then we take the largest one). We denote 

it by z0, then the values of x0 = z0 – u and y0 = z0 – v 

are uniquely determined. All three numbers z0, x0 and 

y0 cannot be simultaneously natural numbers, as 

follows from our previous analysis. If we increase z 

by a = 10k, then z → z + 10k, x → z + 10k – u = x 

+ 10k , y → z + 10k – v = y + 10k. It should be kept in 

mind that when z changes by a, the quantities u and 

v  do not change (see below). In this case, the root 

will decrease by the same number 10k, i.e. z0 → z0 – 

10k, and likewise x0 → x0 – 10k, y0 → y0 – 10k. 

Therefore, the root will not be a natural number. If, 

conversely, we reduce z by 10k, then z will go 

beyond the set of natural numbers. Let us explain this 

with a concrete example. Let 2u  , 1v  ;  the 

permitted degree p = 6, then we have an equation 
6 6 6( 2) ( 1) 0z z z    

 
in which z is an 

elementary base and varies within [1, 10]. The 

obvious solution is 0 1z  , then 0 1x   , 0 0y  ,
 

i.e. three numbers z0,  x0  and y0 are not natural 

numbers at the same time. With increasing z for 

example by a =10 (here k = 1), it (and also x and y) 

will go into the second ten, and the equation is 

transformed into (z +10 – 2)
6
 + (z +10 – 1)

6
 –

 (z +10)
6
 = 0. The root z0 will decrease by 10, i.e. z0 

→ z0 – 10 = – 9, and likewise x0 → x0 – 10 = – 11, 

y0 → y0 – 10 = – 10, so solutions will not be a natural 

numbers. With decreasing z by a = 10 it (and also x 

and y) goes beyond the limits of the set of natural 

numbers, i.e. will not satisfy the conditions of the 

theorem. Thus, synchronous (simultaneous) change 

of bases by the value 10a k  does not change the 

class of solutions. Fermat's theorem is proved. 

However, we will continue to investigate the 

properties of the assumed solutions, since this makes 

it possible to understand the reasons why equation (1) 

does not have natural solutions. Let us consider the 

role of transformations in more detail. The results of 

the analysis for elementary bases show that for 

several of them the conditions (4), (5) are not 

satisfied. To achieve it, we use the second 

transformation, i.e. an increase in all or some of the 

bases by a number 10a k , so that conditions (4), 

(5) were satisfied. A multiple of 10 is added so that 

the basic condition is not violated. We call a triplet 

(x, y, z), where x < y, regular if it satisfies conditions 

(4), (5) and irregular otherwise. Several cases are 

possible. If an elementary triplet is regular, then 

increasing three bases by 10, we obtain the regular 

triplet. For example, for p = 4 we have (5, 6, 7) 

→ (15, 16, 17) → (25, 26, 27) etc. But only one of 

the bases cannot be increased by 10, since condition 

(4) will be violated. Similarly, if initial elementary 

triplet is irregular and condition (4) is satisfied, then 

increasing all three bases by 10, we obtain regular 

triplet. For example, for p = 4 we have (5, 6, 9) 

→ (15, 16, 19) → (25, 26, 29) etc. If initial 

elementary triplet is irregular, and z = x + y, i.e. 

condition (4) is not satisfied, then increasing all three 

bases by 10, we obtain regular triplet. For example, 

for p = 5 we have (3, 4, 7) → (13, 14, 17) → (23, 24, 

27) etc. If initial elementary triplet is irregular, and x 

< z < y, then a regular triplet is obtained by increasing 

bases x and z by 10 or x and y by 10, but z by 20. For 

example, for p = 6 we have (4, 7, 5) → (7, 14, 15), 

(14, 17, 25) → (24, 27, 35) etc. If initial elementary 

triplet is irregular, and z < x < y, then a regular triplet 

is obtained by increasing bases x and y by 10, but z 

by 20. For example, we have (5, 7, 4) → (15, 17, 24) 

→ (25, 27, 34) etc. Finally, if z > (x + y), then a 

regular triplet is obtained by increasing all three 

bases by 10. For example, for p = 6 we have (2, 3, 7) 

→ (12, 13, 17) → (22, 23, 27) etc. So, in the second 

or the third tens all triplets become regular and 

further all regular triplets are obtained by 

synchronously increasing all the bases by a number 

a = 10k, but, of course, sequentially, i.e. first by 10, 

then by 20, etc. In this case conditions (4), (5) are 

satisfied and, at the same time, the basic condition is 

not violated, i.e. the ends of numbers on the left and 

right sides of equation (1) do not change. The 

analysis of the bases in the second tens can be carried 

out directly according to the example of analysis for 

elementary bases and does not, in principle, add 

anything new to the solution of the main problem. In 

the second tens, the same relationships are used as for 

elementary bases, namely, if  x
2 
+ y

2
 ≤ z

2
, then such 

bases are excluded from consideration, if x
2 
+ y

2
 > z

2
, 

then the sign of the difference  x
l 
+ y

l
 – z 

l 
is verified 

for the first admissible degree (or for degree 3 – for 

the reduction of calculations). If this sign is positive, 

then l increases by one, if negative, then the test is 

ended, and these bases can be excluded from 

consideration. Further the analysis is carried out in 

the third tens (from 20 to 30), etc. The process 

quickly "converges" in the sense that the number of 

bases analyzed decreases, and after a few steps there 

are only bases for which the inequality x
2 
+ y

2
 > z

2 

holds (see below). The method of induction easily 

proves that in this way all the admissible bases are 

obtained. Nevertheless, such an analysis may seem 

laborious, so let us give a general relationship that 

simplifies the analysis. We have for any fixed p the 

following relation 
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(7) 

 

In the expression (7), the elementary bases are taken 

as the initial ones, or the smallest ones for which the 

left-hand side of condition (4) is satisfied, so that all 

bases are regular even with their increase by 10. Note 

that if the base in the right-hand side increases by a to 

increase by a only one base in the left-hand side of 

equation (1), then (7) is transformed to the form 

112222

2222111

)()(

...)()(

)()()(











pp

p

pp

p

pp

p

pp

p

ppppp

azxCazxC

azxCazxC

zxazyax

     

     

(7a) 

 

All the terms on the right-hand side of (7a) are less 

than zero, so equality is impossible, and such bases 

cannot be solutions of equation (1). However, with 

the subsequent increase of both numbers x and y by a, 

additional combinations can be obtained (see below). 

Let us introduce the characteristic quantities in the 

framework of our approach. Designate x + y – z = b, 

u = z – x, ν = z – y, Δ = x – y = u – ν, x
2
 + y

2
 – z

2
 = c, 

x
3
 + y

3
 – z

3
 = d, x

4
 + y

4
 – z

4
 = h, x

5
 + y

5
 – z

5
 = f. All 

numbers are natural, and for definiteness we take, as 

above, that x < y. We give the following relationships 

that are convenient for subsequent calculations:  

3 3 3 3 3 ( )d x y z b uv z b      ,  (8) 

222

4444

2)]([

4

vubzzb

uvbzyxh




,   (9) 

2 2 2 2 2c x y z b uv     ,   (10) 

( )b x y z z u v      ,   (11) 

)]()(3[

5

223

5555

bzubzzbzb

ubzyxf








,  (12) 

66

6666

)()(

)(

vubvb

ubzyxg




,
 
  (13) 

 etc. 

Relation (10) is obtained if we express x and y 

through z in expression x
2
 + y

2
 – z

2
 = c and perform 

simple transformations. The relations (8), (9), (12), 

(13) are obtained similarly. It is easy to derive a 

general relationship. For this we designate 
1 1 1

1

p p p

px y h z  

   ; using (11), we multiply 

this equation on the left by x + y, and on the right by z 

+ b. Carrying out the grouping, we obtain the 

recurrence relation 

))()(()( 2

2

1

1













p

p

p

pppp

p

zhzuzbz

hbzzyxh


,  (14)  

where 1h b , 2h c , etc.; p > 2.  

Let us see how the characteristic quantities 

introduced above change if the elementary bases 

increase by a number a. Relations (8) – (13) are 

convenient since they allow us to express the 

quantities of interest through a quantity b, variation 

of which proportional to a, and the quantities u and 

ν which do not depend on the value of  a. From (8) – 

(13) it follows that the value b will increase by a, the 

value of c will increase by (2 )a b a , d increases 

by 
2(3 3 )a c ba a  , the quantity h increases by 

2 3(4 6 4 )a d ca ba a  
 
etc., the values u, ν and 

Δ will not change. Consider the following cases: 
0b  , 0b   and 0b  . We can say that the "fate" 

of the natural solutions of equation (1) is already 

determined for p = 1 and p = 2. The bases grouped 

according to the selected cases are given in table 3, 

and the results of the analysis for different b are 

given in tables 4 – 6. The results of the analysis for 

bases with 0b   (this case occurs only up to the 

first increase in elementary bases by 10) are 

presented in table 4. We note that all the 

characteristic quantities in this case are negative, and 

we are interested in their transition through zero. 

When the elementary bases are increased by the 

number 10a k , the characteristic values change as 

follows. Let's put a = 10 (k = 1). Since we consider 

prime elementary bases, 10b , b varies from 6  

to 2  so then b will become positive for all triplets 

and remains positive with further increase of a. The 

value of c changes by 20 at 4b   , by 60 at 

2b   , and by 20  at 6b   . When a = 20 

value of c increases by 240 at 4b   , by 320 at 

2b   , and by 160 at 6b   . When a = 30 value 

of c increases by 660 at 4b   , by 780 at 2b   , 

and by 540 at 6b   , i.e. becomes positive for all 

triplets. The value of d changes as follows. For a = 

10, d varies from 1400  ( 2b   , 32uv  ) to 

5420  ( 2b   , 99uv  ). For a = 20, d varies 

from number 2000 ( 2b   , 32uv  ) to number 

6040 ( 2b   , 99uv  ). For a = 30, d varies 
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from number 16200 ( 2b   , 32uv  ) to number 

4140 ( 2b   , 99uv  ). As a result, we obtain 

that the value d becomes positive when 

a = 30( 2b   ), when a = 40( 4b   ) and when 

a = 50( 6b   ). Similarly, an analysis is carried out 

for the quantities h, f and g. The quantity g 

corresponds to the largest permitted degree 6 (taking 

into account the repetition period of the last digit). In 

particular, the quantity h becomes positive when a = 

30 ( 2b   , 32uv  ) and when a = 50 

( 2b   , 99uv  ). Let us consider the case b = 0. 

The results of the analysis are given in table 5. Here, 

all calculations are greatly simplified. The final result 

is as follows. The value of c becomes positive, when 

a = 20, for the whole range of its values, changing the 

sign from minus to plus when a changes from 10 to 

20. The value of d becomes positive, when a = 30, 

for the whole range of values, changing the sign from 

minus to plus when a changes from 10 to 30 

(depending on the values of u and ν). The quantity h 

becomes positive, when a = 50, changing the sign 

from minus to plus when a changes from 20 to 50 

(depending on the values of u and ν). Similarly, an 

analysis is carried out for the quantities f and g. Let 

us consider the case b > 0. The results are given in 

table 6. The final result is as follows. The quantity b 

takes the values 2, 4, 6, 8, 10 and when the bases are 

increased by a = 10 its range is from 12 to 20. The 

quantity c becomes positive when a = 10. We note 

that for the case b > 0 some of the initial values of c 

are zero or positive. For the quantities d and h we 

give estimates for the "worst" case b = 2. For the 

remaining b, these quantities become positive even at 

a = 10 and a = 20. For a = 10, the change in d is from 

1600 ( 2b  , 2uv  ) to 224  ( 2b  , 66uv  ). 

Its change is more than zero for 172 6uv  and less 

than zero for 172 6uv ; the equality to zero is 

impossible for the admissible values of the quantities, 

since 172 is not divisible by 3. For a = 20, the change 

in d is from 10400 ( 2b  , 2uv  ) to 2720 

( 2b  , 66uv  ). For a = 30, the change in d is 

20880 ( 2b  , 66uv  ), i.e. all values of d become 

positive. For the value of h, the following results are 

obtained. For b = 2 and a = 10, the variation of h is 

from number 16640 ( 2uv  , 3u v  ) to number 

14560 ( 66uv  , 17u v  ). For a = 20, the 

change will be from 221280 ( 2uv  , 3u v  ) to 

415200  ( 66uv  , 17u v  ). For a = 30, the 

change will be from 1022820 ( 2uv  , 3u v  ) to 

163200  ( 66uv  , 17u v  ). Finally, for a = 

40, the change is 295200( 66uv  , 17u v  ), 

and all the values of h become positive. Note that the 

change cannot be zero for the combinations of 

quantities under consideration. Selective calculations 

were carried out according to the general relations 

(7), (8) – (13), and for the verification tables of 

degrees were used. Their purpose is to determine the 

scale and trends of the change in characteristic 

quantities. The transition of the characteristic 

quantities through zero is hidden from our view and 

does not occur for integer, positive values for p > 2 

for the allowed exponents. From table 6, as a side 

(additional) result, solutions of the quadratic equation 

(1) for p = 2 are obtained. In the range of elementary 

bases and the closest to them, we have four families 

of such solutions: {(3, 4, 5), (6, 8, 10), (9, 12, 15)}, 

{(8, 15, 17)}, {(5, 12, 13)}, {(7, 24, 25)}. Summarize 

our previous consideration. We designate 

( , , , ) p p pF p x y z x y z   . Obviously, if b ≤ 0, 

then F(p, x, y, z) < 0 (for p > 2) by virtue of (4) – (6). 

For any fixed p > 2, increasing the initial elementary 

bases by a = 10k, one can observe a change in the 

sign of the quantity F(p, x, y, z) from minus to plus 

due to the fact that, as follows from (7), the quantity 

a
p
 will predominate over the rest of members. On the 

other hand, for any fixed base (or, which is the same, 

for any a = 10k), increasing the exponent p > 2, one 

can observe a change in the sign of the quantity F(p, 

x, y, z) from plus to minus due to the fact that, as 

follows from (7), z
p
 will predominate over the rest of 

members (as z > max(x, y)). For p > 2, the equality of 

F(p, x, y, z) to zero on the set of natural numbers is 

impossible for any fixed a = 10k and for any fixed p. 

 

 

Table 3: Combinations of prime "elementary" and derived bases permissible under basic conditions for 

different b 

0b   

kkk 444444 952  
 

6 4 6 4 6 43 5 12k k k   
 

3 4 3 4 3 44 9 17k k k   
 

6 4 6 4 6 47 6 15k k k   
 

4 4 4 4 4 42 5 11k k k   
 

3 4 3 4 3 43 9 16k k k   
 

3 4 3 4 3 47 4 13k k k   
 

3 4 3 4 3 47 9 18k k k   
 

6 4 6 4 6 42 5 13k k k   
 

kkk 444444 17103  
 

6 4 6 4 6 47 4 15k k k   
 

kkk 242424 1154  
 

3 4 3 4 3 42 7 11k k k    kkk 464646 17103  
4 4 4 4 4 47 5 16k k k    6 4 6 4 6 48 5 17k k k   



Vadim N. Romanov Int. Journal of Engineering Research and Application                     www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 1, ( Part -III) January 2018, pp.57-68 

 

  
www.ijera.com                                          DOI: 10.9790/9622-0801035768                               64 | P a g e  

 

 

 

 

    

3 4 3 4 3 42 9 13k k k   
 

4 4 4 4 4 43 10 19k k k   
 

4 2 4 2 4 29 5 16k k k   
 

4 4 4 4 4 48 5 17k k k   
 

6 4 6 4 6 42 9 15k k k   
 

4 4 45 6 13k k k     
4 4 4 4 4 47 5 14k k k   

 

4 4 4 4 4 49 5 18k k k   
 

3 4 3 4 3 43 4 11k k k   
 

4 4 4 4 4 44 5 13k k k   
 

  

0b   

kkk 232323 532    
5 4 5 4 5 43 6 9k k k     

5 4 5 4 5 47 4 11k k k   
 

kkk   333 1358  

kkk   333 752  
kkk 232323 1073  

 

kkk   333 1257  
5 4 5 4 5 48 9 17k k k   

 

5 4 5 4 5 42 7 9k k k     
5 4 5 4 5 43 8 11k k k   

 

5 4 5 4 5 47 6 13k k k   
 

kkk   333 1459  

5 4 5 4 5 42 9 11k k k   
 

kkk   333 13103  
kkk 232323 1587    

3 2 3 2 3 29 6 15k k k   
 

5 4 5 4 5 43 4 7k k k     
kkk   333 954  

5 4 5 4 5 47 9 16k k k   
 

kkk   333 19109  

kkk   333 853  
3 3 35 6 11k k k     

kkk   333 17107  
 

0b   

0c  
4 4 4 4 4 43 5 6k k k     

3 4 3 4 3 413 9 16k k k   
 

6 4 6 4 6 46 13 15k k k   
 

6 4 6 4 6 48 11 15k k k   
 

3 4 3 4 3 43 6 7k k k   
 

4 4 4 4 4 46 15 17k k k   
 

3 4 3 4 3 48 11 17k k k   
 

4 4 4 4 4 44 5 7k k k     

3 4 3 4 3 43 8 9k k k     
6 4 6 4 6 43 9 10k k k   

 

6 4 6 4 6 48 9 15k k k   
 

3 4 3 4 3 414 9 17k k k   
 

3 4 3 4 3 43 11 12k k k   
 

kkk 242424 13107  
 

4 4 4 4 4 48 5 11k k k   
 

kkk 242424 171310  
 

3 4 3 4 3 46 11 13k k k   
 

4 4 4 4 4 49 5 12k k k   
 

4 4 4 4 4 49 10 17k k k   
 

kkk 242424 965    

4 4 4 4 4 410 13 19k k k   
 

3 4 3 4 3 47 16 19k k k   
 

kkk 464646 171310  
 

3 4 3 4 3 43 18 19k k k   
 

0c  

6 4 6 4 6 43 4 5k k k     
kkk 464646 13125  

 

6 4 6 4 6 47 24 25k k k   
 

kkk 242424 17158  
 

0c
 

kkk 242424 857    
6 4 6 4 6 47 9 10k k k   

 

4 4 4 4 4 47 10 11k k k   
 

kkk 242424 11109  
 

kkk 434343 171613  
 

3 4 3 4 3 47 6 9k k k   
 

kkk 444444 985    
kkk 444444 12115  

 

kkk 444444 161513  
 

3 4 3 4 3 417 9 18k k k   
 

kkk 444444 131110  
 

kkk 434343 181513  
 

kkk 464646 151413  
 

3 4 3 4 3 48 9 11k k k   
 

kkk 434343 976    
kkk 232323 191514  

 

kkk 434343 191813  
 

3 4 3 4 3 49 12 13k k k   
 

kkk 454545 171413  
 

kkk 454545 151312  
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4 2 4 2 4 29 15 16k k k   
 

kkk 444444 765  
 

3 3 315 11 16k k k     
kkk 464646 171512  

 

kkk 444444 171615  
 

4 4 4 4 4 49 10 13k k k   
 

  

Note. The table gives prime triplets from the first and second tens, so as to show the full range of possibilities. 

Irregular triplets for which b ≤ 0, and also triplets, for which b > 0, but c ≤ 0, serve as the basis for obtaining 

regular triplets. 

 

Table 4: Calculation of the characteristic values for b < 0 

v u b c x y z d h f g p  

4 7 -2 -52 2 5 9 -596 -5920 -55892 -515752 4 

6 9 -4 -92 2 5 11 -1197 - 14000 -157894 -1755870 4 

8 11 -6 -140 2 5 13 -2100 -28000 -370000 -4800000 6 

4 9 -2 -71 2 7 11     3 

4 11 -2 -84 2 9 13     3 

6 13 -4 -140 2 9 15     6 

6 7 -2 -80 4 5 11     4 

8 9 -4 -128 4 5 13 -2000 -28000 -367000 -4800000 4 

8 11 -4 -192 4 9 17     3 

7 8 -4 -96 3 4 11     3 

7 9 -4 -110 3 5 12     6 

7 13 -4 -166 3 9 16     3 

7 14 -4 -180 3 10 17     4; 6 

9 16 -6 -252 3 10 19     4 

7 11 -2 -151 5 9 16     4 

9 13 -4 -218 5 9 18 -1900 -31000 -480000 -7000000 4 

6 9 -2 -104 4 7 13     3 

8 11 -4 -160 4 7 15     6 

7 9 -2 -122 5 7 14     4 

8 9 -2 -140 6 7 15 -2900 -47000 -735000 -11240000 6 

9 11 -2 -196 7 9 18     3 

9 12 -4 -200 5 8 17     4; 6 

9 11 -4 -182 5 7 16     4 

7 8 -2 -108 5 6 13     4 

Note. Here and below p is the smallest exponent, allowed (permissible) by the basic restrictions; for d, h, f, g are 

given separate values indicating the order of quantities. 

 

Table 5: Calculation of the characteristic values for b = 0 

v u b c x y z d h p  

2 3 0 -12 2 3 5 -90 -578 3; 5 

2 5 0 -20 2 5 7 -210  3; 5; 6 

2 7 0 -28 2 7 9 -243 -4144 5 

2 9 0 -36 2 9 11 -594  5 

3 4 0 -24 3 4 7 -252  5 

3 5 0 -30 3 5 8 -360  3; 4; 5; 6 

3 7 0 -42 3 7 10 -630  3; 5 

3 8 0 -48 3 8 11 -792  5 

3 10 0 -60 3 10 13 -1170  3; 4; 5; 6 

4 5 0 -40 4 5 9 -540  3 

4 7 0 -56 4 7 11 -924  5 

5 7 0 -70 5 7 12 -1260  3; 4; 5; 6 

6 7 0 -84 6 7 13 -507  5 

7 8 0 -112 7 8 15 -2520  3; 5 

7 9 0 -126 7 9 16 -3024  5 

7 10 0 -140 7 10 17 -3570  3; 4; 5; 6 
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v u b c x y z d h p  

5 8 0 -80 5 8 13 -1560  3; 4; 5; 6 

8 9 0 -144 8 9 17 -3672  5 

8 11 0 -176 8 11 19 -5016  5 

4 11 0 -88 4 11 15 -1980  3 

5 9 0 -90 5 9 14 -1890  3; 4 

9 10 0 -180 9 10 19 -5130  3; 4; 5; 6 

5 6 0 -30 5 6 11 -990  3 

5 11 0 -110 5 11 16 -2640  3 

5 12 0 -120 5 12 17 -3060  5 

2 15 0 -60 2 15 17 -1530  3 

 

Table 6: Calculation of the characteristic values for b > 0 

v u b c x y z d h p  

1 3 2 -2 3 5 6 -64 -590 4 

1 4 2 -4 3 6 7 -100 -1024 3 

1 6 2 -8 3 8 9 -53 -2209 3 

3 7 6 -6 9 13 16 -1170 -30414 3 

1 7 2 -10 3 9 10 -244 -3358 6 

6 9 4 -92 10 13 19 -3662 -91760 4 

1 9 2 -14 3 11 12 -370 -6314 3 

3 6 4 -20 7 10 13 -854 -16160 4; 6 

3 6 2 -32 5 8 11 -694 -9920 4 

6 7 2 -80 8 9 15 -2134 -39968 6 

6 9 2 -104 8 11 17 -3070 -64784 3 

4 7 4 -40 8 11 15 -1532 -31888 6 

2 3 2 -8 4 5 7 -154 -1520 4 

3 7 2 -38 5 9 12 -874 -13550 4 

3 8 6 -12 9 14 17 -1440 -38544 3 

7 8 2 -108 9 10 17 -3184 -66960 4 

2 7 4 -20 6 11 13 -650 -12624 3 

1 4 8 -56 9 12 13 260 -1264 3 

3 11 2 -62 5 13 16 -1774 -36350 4 

1 13 2 -22 3 15 16 -694 -14830 4 

1 14 2 -24 3 16 17 -790 -17904 3 

4 11 2 -84 6 13 17 -2500 -53664 3 

2 9 4 -20 6 13 15 -962 -20768 6 

1 16 2 -28 3 18 19 -1000 -25264 3 

6 11 2 -128 8 13 19 -4150 -97664 3 

3 7 6 -6 9 13 16 -1170 -30414 3 

3 12 2 -68 5 14 17 -2044 -44480 4 

2 13 2 -48 4 15 17 -1474 -32640 4 

2 11 2 -40 4 13 15 -1114 -21818 6 

1 12 2 -20 3 14 15 -604 -12128 6 

1 12 4 -8 5 16 17 -692 -17360 4 

2 11 4 -28 6 15 17 -1322 -31600 4 

3 4 2 -20 5 6 9 -388 -4640 4; 6 

1 2 2 0 3 4 5 -34 -288 6 

2 9 6 0 8 15 17 -1026 -28800 4; 6 

1 8 4 0 5 12 13 -344 -7200 6 

1 18 6 0 7 24 25 -1458 -56448 6 

3 4 12 120 15 16 19 612 -14160 4; 6 

2 3 14 184 16 17 19 2150 18736 3 

3 5 10 70 13 15 18 -260 -25790 3 

4 5 10 60 14 15 19 -740 -41280 3 



Vadim N. Romanov Int. Journal of Engineering Research and Application                     www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 1, ( Part -III) January 2018, pp.57-68 

 

  
www.ijera.com                                          DOI: 10.9790/9622-0801035768                               67 | P a g e  

 

 

 

 

v u b c x y z d h p  

1 7 4 2 5 11 12 -272 -5470 4 

3 4 10 76 13 14 17 28 -16544 5 

2 3 10 88 12 13 15 550 -1328 5 

1 2 4 12 5 6 7 -2 -480 4 

1 3 4 10 5 7 8 -44 -1070 4; 6 

2 3 4 4 6 7 9 -170 -2864 3 

1 9 8 46 9 17 18 -190 -14894 3 

1 7 6 22 7 9 10 72 -1038 6 

1 4 6 28 7 10 11 12 -2240 4 

2 3 6 24 8 9 11 -90 -3984 3 

1 7 8 50 9 15 16 8 -8350 4 

3 4 6 12 9 10 13 -468 -12000 4 

1 5 10 90 11 15 16 610 -270 3 

1 8 6 20 7 14 15 -288 -9808 6 

2 5 10 80 12 15 17 190 -12160 6 

1 2 12 140 13 14 15 1566 16352 6 

1 4 4 8 5 8 9 -92 -1840 4 

1 2 8 60 9 10 11 398 1920 4 

1 6 12 132 13 18 19 1170 3216 3 

1 4 12 136 13 16 17 1379 10576 3 

1 3 12 138 13 15 16 1476 13650 4 

 

Note. For the triplet (13, 14, 15), calculations in 

accordance with (12 14) give f = 149742, g = 

965720, h7 = -2697354; for the triplet (9, 10, 11) 

calculations give f = -2002; for the triplet (16, 17, 19) 

calculations give f = -7666; for the triplet (13, 18, 19) 

calculations give f = -215238; for the triplet (13, 16, 

17) calculations give f = 12, g = -2533544; for the 

triplet (13, 15, 16) calculations give f = 82092, g = -

559782.   

IV. DISCUSSION OF THE RESULTS 
 

Now let us see whether it is possible to 

prove the validity of Fermat's theorem by induction 

on p. From our investigation it follows that the 

theorem holds for p = 3. In order to verify this, it is 

sufficient for a fixed p to observe the sign change 

from minus to plus with increasing elementary bases 

(their number is finite) for a = 10k. For each base the 

value of a depends on b, u, ν and is situated in the 

range from 10 to 30, as it follows from our foregoing 

analysis. If for some p the value of F(p, x, y, z) is less 

than zero, then the induction transition can be proved. 

Indeed, we have 

ppp

pppp

pp

yzyu

zyxxzz

yyxxzyxpF






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)(

),,,1(

. (15) 

   
 

Since all the terms on the right side of (15) are 

negative, this implies the desired statement, i.e.  

( 1, , , ) 0F p x y z  . Now let ( , , , ) 0F p x y z  , 

then nothing can be proved with respect to 

( 1, , , )F p x y z , since the proof by induction (like 

any in number theory) is based on the continuity 

property, and here we have a discontinuity. The 

exponent (p + 1) can turn out to be just such that the 

sign changes from plus to minus. From the 

perspective of our study, this means that we are in the 

range of basis where the sign of ( , , , )F p x y z has 

changed from minus to plus by increasing the base at 

a fixed p, but the sign has not changed from plus to 

minus due to an increase in the exponent p. 

Therefore, to prove by induction, we must assume 

that we are in the range of values of p where such a 

transition occurred, and then the proof is possible. In 

any case, the use of Descartes' rule makes it possible 

to overcome the difficulties noted. Without its 

application, a direct verification of the validity of 

Fermat's theorem using the proposed analysis would 

be possible only on a bounded set of natural numbers. 

Thus, it can be argued that: 1) if equation (1) of 

higher degrees does not have natural solutions among 

elementary bases, then it does not have them at all; 2) 

the existence of "natural" solutions of equation (1) is 

defined for p = 1 and p = 2. For all elementary bases 

and all the degrees allowed for them by the 

conditions of the theorem, and even earlier (for p = 3 

or p = 4), we are initially in the negative range (see 

tables 4 – 6), where the left side of equation (1) is 

less than the right one, so that the increase in the 

exponent is nothing gives, and its decrease takes us 

beyond the conditions of Fermat's theorem. The 
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increase of elementary bases also does not give 

anything, since it shifts the roots of equation (1) 

beyond the limits of the set of natural numbers.  

 

         V. CONCLUSION 
Consider the geometric interpretation of the 

results obtained. For p = 1, equation (1) always has a 

solution, i.e. the sum of two integer segments is 

always an integer segment. For p = 2, equation (1) 

has a solution only in some cases, i.e. the sum of the 

areas of two squares with integer sides is only 

sometimes equal to the area of the square with integer 

sides. For p = 3, equation (1) has no solution, i.e. the 

volume of a cube with integer sides is never the sum 

of the volumes of two cubes with integer sides. This 

is true a fortiori for hypercube. 

 

REFERENCES 
[1]. Romanov V.N. Methods of proving Fermat's 

theorem. Preprint. St. Petersburg, 2005 (in 

Russian). 

[2]. Romanov V.N. Approaches to the proof of 

Fermat's theorem. St. Petersburg, Publishing 

house LEMA, 2009 (in Russian). 

[3]. Romanov V.N. Investigation of the 

fundamental problems of number theory. 

Publishing house "Asterion", 2015 (in 

Russian). 

[4]. Wiles A. Modular Elliptic Curves and 

Fermat’s Last Theorem // Annals of 

Mathematics,1995, Vol. 142, pp. 443-551.  

 

Vadim N. Romanov . “Elementary way of proving Fermat's theorem.” International 

Journal of Engineering Research and Applications (IJERA) , vol. 08, no. 01, 2018, pp. 

57–68. 


